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Confidence intervals for the binomial parameter:
some new considerations
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SUMMARY

Several methods have been proposed to construct confidence intervals for the binomial parameter.
Some recent papers introduced the ‘mean coverage’ criterion to evaluate the performance of confidence
intervals and suggested that exact methods, because of their conservatism, are less useful than asymptotic
ones. In these studies, however, exact intervals were always represented by the Clopper—Pearson interval
{C—P). Now we focus on Sterne’s interval, which is also exact and known to be better than the C—
P in the two-sided case. Introducing a computer intensive level-adjustment procedure which allows
constructing lntervals that are exact in terms of mean coverage, we demonstrate that Sterne’s interval
performs better than the best asymptotic intervals, even in the mean coverage context. Level adjustment
improves the C—P as well, which, with an appropriate level adjustment, becomes equivalent to the
mid-P interval. Finally we show that the asymptotic behaviour of the mid-P method is far poorer than
is generally expected. Copyright © 2003 John Wiley & Sons, Ltd.

KEY WORDS: exact confidence interval; test inversion, minimum coverage; mean coverage: binomial
proportion

1. INTRODUCTION

The construction of confidence intervals for the binomial parameter has an extensive literature.
Several methods, asymptotic as well as exact, have been proposed. Vollset [1] compared
13 methods and recommended the use of the Clopper—Pearson interval (C-P), the mid-#
interval, and the score interval with or without continuity correction. Recently, some authors
adopted a new view based on the concept of ‘mean coverage’, in which strict conservatism is
not a requirement. Newcombe [2] recommended the C—P interval in those cases when strict
conservatism is needed, and otherwise the score and the mid-# intervals. Agresti and Coull [3]
voted for using ‘mean coverage’ instead of the conventional minimum coverage and proposed
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a new method, the so-called ‘adjusted Wald interval’, which they found superior to the score
interval. These papers may suggest that exact methods, because of their conservatism, are less
vaiuable than the asymptotic ones. Agresti and Coull [3] explicitly stated that exact methods
might have an important role somewhere else in statistics but not in this area.

The aim of the present paper is to show that with an appropriate level adjustment exact
methods can be applied in the mean coverage context and may be superior to asymptotic
ones. To enable comparisons, computer programs were written for the Sterne interval and the
above intervals that were found to be best in former comparisons. The programs determine
also the coverage probabilities (see Section 3 for details).

2. STERNE’S EXACT INTERVAL

The interval proposed by Sterne [4] is defined by inverting the exact binomial test with
acceptance regions including the most probable values of the binomial variable, taking the
most probable, then the next most probable, until their total probability reaches the required
level, for example, 95 per cent. (For the details of test inversion see Section 3.) Crow [5]
noted that Sterne’s procedure did not always result in a proper interval and corrected it.
Additionally, he tried to improve it, but his modifications did not make the interval definitely
better (for a summary, see Blyth and Still [6]). Blyth and Still, also starting from the Sterne
interval, constructed their interval according to some further monotonically and smoothness
conditions. Unfortunately, the Blyth and Stll interval [6] is rather complicated to implement
in a computer program. We propose using Sterne’s original {(but corrected) interval. It is
easy to compute, strictly conservative but never too conservative. its total length is near the
possible minimum, and compared to the two-decimal tables in Blyth and Stll’s paper [6],
there are only minor differences.

It should be emphasized that the Sterne interval is inherently two-sided, that is, it cannot
be converted in the usual way into a one-sided interval. The reason for this is that a (1 — o)-
level Sterne acceptance region may have the whole error probability o on one side, therefore
one must not halve the error probability when looking at one side, for example, if taking
the one-sided interval from 0 to the upper limit of a 90 per cent Sterne interval, it must be
regarded again as a 90 per cent rather than a 95 per cent interval. This makes the use of the
Sterne interval unreasonable if one-sided intervals are needed. In such cases the C-P interval
offers a better solution.

Note that Sterne’s method can be applied to a Poisson parameter too, and has the same
advantages as in the binomial case (computer programs are available from the author).

3. CONFIDENCE INTERVAL CONSTRUCTION BY TEST INVERSION

For those not familiar with confidence interval construction methods, let us demonstrate
through an example how confidence interval construction by test inversion works. This is
the idea behind several confidence interval construction methods (for example, the C-P, the
mid-P, the Sterne etc.). The methods differ just in the test to be inverted.

Suppose we want fo invert a test of Hy: p= po for the binomial parameter p to get a
90 per cent confidence interval for p based on, say, n—=6 observations. Denote by X the
observed number of successes. The basic idea is that a 90 per cent confidence set should

Copyright © 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:611-621
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Table I. The columns contain binomial probabilities (7 =6, p on the horizontal axis). In

each column bold face probabilities indicate the 90 per cent acceptance regions of the Sterne

test of Hy: p= p;. The horizontal line indicates the 90 per cent Sterne confidence interval
given X =3 is observed.

X pi

0 0.1 6.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.0000 0.0000 0.0001 0.06007 0.0041 0.0156 0.0467 6.1176 0.2621 0.5314 1

0.0000 0.0001 0.0015 0.0102 0.0369 0.0938 0.1866 6.3025 0.3932 0.3543 0.0000
0.0000 0.0012 00154 0.0595 0.1382 0.2344 0.3110 0.3241 0.2458 0.0984 0.0000
0.0000 0.0146 0.0819 ©€.1852 0.2765 0.3125 0.2765 0.1852 0.0819 0.0146 0.0000
0.0000 0.0984 0.2458 0.3241 0.3110 0.2344 0.1382 0.0595 09154 0.0012 0.0000
0.0000 0.3543 0.3932 0.3025 0.1866 0.0938 0.0369 0.0102 0.0015 0.0001 0.0000
1 0.5314 0.2621 6.1176 0.0467 0.0156 0.0041 0.0007 0.0001 0.0000 0.0000

O o= b L B O

consists of all such values py of the parameter for which Hy: p= py is not rejected by the
test at the 90 per cent level. Assume for simplicity that one-digit precision is sufficient for
the interval endpoints, because in this case the procedure can be demonstrated using a small
table of binomial probabilitics (Table I). The most natural way to find the confidence interval
(which is, however, computer intensive if higher precision is required) is to determine the
acceptance regions of Hy: p= p; for each p; (p;=0,0.1,02,...,0.9,1), and to take the first
and the last p; for which the acceptance region contains the observed X. Note that for some
tests the endpoints of the acceptance regions do not increase monotonically with p. In such
cases the set of those p; values for which Hy: p= p; 1s not rejected at a given level does
not form a proper interval, but it contains ‘holes’. As Crow noticed, this may happen with
the Sterne test. Of course, taking the smallest and largest p;, as was suggested above, always
results in a proper interval.

Bold face probabilities in Table I indicate the 90 per cent acceptance regions of the Sterne
test, for example, for Hy: p=10.2, the acceptance region consists of the values X' =0,1,2.
Note that the type 1 error probability is always 1 minus the probability of the acceptance
region (0.0989 in this particular case). Now suppose we have observed X =3. The 90 per
cent confidence interval obtained from the acceptance regions of the Sterne test is (0.3 , 0.7),
since for the p; values in this interval, the hypothesis Hy: p = p; cannot be rejected at the 90
per cent level (Table 1). The coverage probability given the true parameter is p; is equal to the
probability of the acceptance region belonging to p;, which means that numerical estimates
for mintmum and mean coverage can be obtained immediately as side-products of the test
inversion procedure. Let us calculate the probabilities of the acceptance regions for each p;
in Table I. For p=0 we get 1, for p=20.1 we get 0.9841 etc. As the smallest one is 0.9011
(for p=0.2), the estimated minimum coverage probability of the 90 per cent Sterne interval
is 0.9011. Similarly, the estimated mean coverage is 0.9475. These estimates would be more
precise if they were based on a finer division of the parameter space, that is, if using steps
<0.1. In the present study, a step of 0.0001 was applied to provide sufficient accuracy for
the coverage estimates.

Interval endpoints can be characterized as such parameter values, at which there is a change
in the acceptance region. This may occur, for example, if the tail probability reaches the
desired value. This happens in Table | between p=0.2 and p = 0.3 (actually at about 0.2010),
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therefore the interval belonging to X =3 starts here. Unlike methods handling the two tails
independently (like, for example, the C-P), in the case of the Sterne interval there is a further
reason for changes in the acceptance region, namely if the same probabilities appear at both
ends. This is illustrated by p=0.5 in Table 1. Here, although the desired level is not reached,
the acceptance region changes, as on the left of this point P(X = 1)>P(X =5), while on the
right P(X = 1) <P(X =5) holds. Therefore the interval belonging to X =1 ends, while that
belonging to X =35 starts here.

Some properties of the confidence intervals are easy to derive from the properties of the
acceptance regions, for example, if the acceptance regions of one test are contained in those
of another test for all p;, then even the confidence intervals are contained in the intervals
obtained from the other test. If all acceptance regions of one test are shorter than are those
of another test, then the resulting confidence sets are also shorter, regarding total length.
As the Sterne test uses the highest probabilities to construct the acceptance regions, it has
the shortest possible acceptance regions, and so the Sterne confidence set has minimal total
length, at least if it contains no ‘holes’. If it does, and it is corrected by taking the smallest
and largest p; to form a proper interval, it loses this minimality property, but the increase
is actually unobservably small. (Evaluating all 95 per cent intervals up to n= 100, the mean
relative increase of total length was 0.04 per cent.)

4. OTHER INTERVALS TO BE COMPARED

For a short description of the intervals to be examined, let n, p and z denote the sample size,
the observed probability and the 1 — /2 critical value of the standard normal distribution.
Let b, ,(.) and B, ,(.) denote the probability mass function and the CDF of the binomial
distribution with parameter p.

1. Wilson’s score interval [7] is defined by the formula
2np+ 27 222 +4np(l — pPHV)/2(n+2%)

The score interval is included in most textbooks. Its continuity corrected version [1] is
not considered here because our experiences supported the findings of Agresti and Coull
[3] that it performs similar to, if not a little worse than, the C-P interval.

2. The adjusted Wald interval has been proposed by Agresti and Coull [3]. It is calculated
according to the Wald formula after adjusting the observed sample, that is

p=zVIp0 - B}

where p=(np-+z%/2)/(n+z*) and fi=n +z*. Surprisingly, though it was derived as an
approximation to the score interval, it has better coverage properties.

3. The Clopper—Pearson interval [8] is usually considered, in spite of some warnings [9], as
the ‘gold standard’. It is defined by inverting the exact binomial tests with equal-tailed
acceptance regions (L,, U,), that is, where L, is the largest value for which

Bﬂ, p(Lp) < 35/2

Copyright © 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:611-621
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and U, is the smallest value for which
Bn,p((]]) + 1)2 1 - 1/2

The (1 — a)-level confidence interval consists of all p such as L, < p<U,.
4. The mid-P interval [10] is defined similarly, but using slightly different (potentially
narrower ) acceptance regions (L, U,). L, is the largest value for which

BI‘I, p(L; — 1) -+ 1/2b”=[7(L//) — 1)<O(/2
and U} is the smallest value for which
Bn’p(Ulg) + 1/2bi1,p(U[_:)> 11— a/2

Here too, the (1 —a)-level confidence interval consists of all p such as L, < p<U,.

5. COMPUTER INTENSIVE LEVEL-ADJUSTMENT PROCEDURE

The C-P interval is often criticized for its conservatism. However, its conservatism 1s not
because it is exact but because it aims to be symmetrical, that is, a 95 per cent interval
aims to have 2.5 per cent error probability on each side, which, at worst, may actually result
in a 97.5 per cent interval [11]. Other exact intervals releasing the condition of symmetry
[4—6] are able to avoid conservatism even for small samples. Those insisting on symmetry
and therefore choosing the C—P interval should keep in mind that even this method cannot
guarantee symmetry, since the error probabilities are in fact not exactly 2.5 per cent, but less
than that.

Conservatism is actually a discrepancy between what is expected and what is actually
achieved (that is, the nominal and actual level). Thus the simplest way to avoid conservatism
is determining and reporting the actual level rather than the nominal one. Even if doing
so, the actual level may differ from the desired. To overcome this, a computer intensive
level-adjustment procedure is proposed. The idea is very simple, namely varying the nominal
level iteratively until the actual level gets close enough to the desired level. In the present
implementation, the procedure finds the smallest nominal level with a precision of four decimal
places for which the actual level is still above the desired one, for example, to have a C-P
interval with an actual level of about 90 per cent for n =15, we should go down to the 83.59
per cent nominal level, so we obtain 90.88 per cent actual level. This is somewhat better than
the 93.14 per cent that we get using the nominal 90 per cent interval. Another advantage
of the procedure is that it can be applied in the same way for adjusting the mean coverage,
which yields exact intervals in terms of mean coverage. Thus it is possible to construct a level-
adjusted C-P interval for practically any prescribed mean coverage probability, for example,
to get a C—P interval with 95 per cent mean coverage for » =10, one should go down to the
87.18 per cent nominal level. Note that this provides a minimum coverage of 88.95 per cent,
still considerably higher than that of the 95 per cent score interval, which is 83.56 per cent.

The procedure can be applied in relation with other confidence interval construction methods
as well, not exclusively with the C-P interval. Note that the Sterne interval needs level
adjustment only in relation to the mean coverage.

Copyright © 2003 john Wiley & Sons, Ltd. Statist. Med. 2003; 22:611-621



616 J. REICZIGEL

6. RESULTS OF THE COMPARISONS

In the comparisons, both the minimum and the mean coverage criteria are considered. Any
riterion is chosen, an interval is better than another if (i) its coverage is closer (possibly
from above) to the desired value, and (ii) its fluctuation of coverage is less. The former can
be measured simply as a distance; the latter however is more difficult to measure. In the
present study, two measures are used for this purpose. One is the root mean square error of
the coverage around the minimum or the mean coverage (depending on the criterion used),
and the other is the proportion of the parameter space with coverage probability within given
limits around the desired value [3], for example, for 95 per cent intervals, the range from 95
to 97 per cent is used in relation to minimum coverage and the range from 93 to 97 per cent
in relation to mean coverage. If comparing various methods in terms of coverage fluctuation
or interval width, it is desirable to compare intervals with the same actual rather than nominal
coverage (either minimum or mean). To explain this, suppose that we are comparing a nominal
95 per cent C-P to a nominal 95 per cent score interval for n = 10. It is not at all surprising
that the score interval is shorter, because in terms of minimum coverage we are comparing a
96.1 per cent C-P to a 83.6 per cent score, or in terms of mean coverage, a 98.37 per cent
C-P to a 95.41 per cent score. The level adjustment procedure is used here to provide that
the mtervals to be compared have the same actual level.

Choosing the minimum coverage criterion, only the C-P and the Sterne intervals were
considered, of which obviously the Sterne interval was better in terms of minimum coverage
as well as coverage fluctuation (Table 1T}). Choosing the mean coverage criterion, the score,
the mid-# and the adjusted Wald intervals were found to be the best in former comparisons
[1-3]. Now they are compared to the mean coverage adjusted C—P and Sterne intervals. Owing
to the mean coverage adjustment, the C-P and Sieme intervals are exact in terms of mean
coverage, that is, in this respect they are superior to the asymptotic ones. For the comparisons,
we adjusted the exact intervals to have the same mean coverage as the asymptotic interval,
rather than to have the desired coverage. The reason for this is that fluctuation depends to
some extent on the mean value, so it would not be fair to compare the coverage fluctuation of
intervals with different mean coverage. Results show (Table 111) that the Sterne interval has
higher minimum coverage probability than the other intervals with the same mean coverage
(also indicating that it shows less coverage fluctuation than those do). The mean coverage
adjusted C—P interval has about the same minimum coverage as the mid-P and the adjusted

Table II. Comparison of the 95 per cent Clopper—Pearson (C—P) and the Sterne interval.

Sample  Minimum Root MSE of coverage Proportion of the parameter
size coverage” (around the minimum coverage) space with 0.95 <coverage <0.97
C-P/Sterne C-P/Sterne
10 0.9610 0.0245/0.0201 0.078/0.201
15 0.9515 0.0300/0.0218 0.221/0.499
30 0.9505 0.0251/0.0162 0.396/0.803
50 0.9508 0.0209/0.0132 0.617/0.878
100 0.9503 0.0166/0.0105 0.832/0.946

“That of a nominal 95 per cent C—P interval. Sterne’s interval was constructed to have the same
minimum coverage.

Copyright © 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:611-621
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Wald intervals. The score interval has considerably less minimum coverage than do all the
others. Concerning coverage fuctuation, the asymptetic methods are better than the C—P while
worse than the Sterne interval, according to both measures.

Total length of both the mean coverage adjusted C—P and Sterne intervals is a little less
(= 0.4-1.3 per cent) less than that of the score interval for n< 100, given the mean coverage
is the same. In the case of small samples (1<30), they are also a little shorter (=0.2-1.6 per
cent) than the adjusted Wald interval. The total length of the mid-P interval is about the same
as that of the mean coverage adjusted exact intervals {4 0.3 per cent). In fact these differences
do not have much practical importance but show that much better coverage properties of the
Sterne interval do not imply an increase in interval length. Using the score interval with the
Blyth and Still limits for boundary outcomes [6], the minimum coverage increases to about
89 per cent but all other properties remain more or less the same.

For 90 per cent and 99 per cent intervals, results are similar except that the mean coverage
of the 99 per cent score interval remains below the nominal level even for larger samples,
that is, the 99 per cent score interval is anticonservative even in terms of mean coverage. (Its
mean coverage was found to be 0.9875, 0.9888, 0.9895 for n= 10,30, 100, respectively.)

7. DISCUSSION

The coverage probability of a confidence interval for a parameter is defined as the probability
that the interval contains the parameter. Of course, this probability may depend on the true
value of the parameter. Usually it is impossible to have the same coverage probability for all
parameter values (like in the present case, due to the discreteness of the binomial distribution),
which calls for a global measure. The traditional confidence coefficient (also called confidence
level or minimum coverage) is the imfimum, while the mean coverage [2,3] is the average
of the coverage probability over the whole parameter range (for the binomial parameter, over
the [0, 1] range). There is an important difference in the interpretation of these measures. The
confidence coeflicient can be interpreted as a lower bound of the coverage rate, guaranteed by
the procedure. Mean coverage, however, being based on averaging over the whole parameter
set, does not have any meaningful interpretation in relation to a single problem, just for a
wide range of problems. It may have some special meaning for statisticians analysing lots of
data sets with various true probabilities and aiming at a ‘lifetime mean coverage’ of 95 per
cent, but could they really expect that all possible true probabilities occur uniformly in their
practice? For example, epidemiologists studying the occurrence of rare diseases might protest
against averaging over the whole [0,1] range. Mean coverage calls for the Bayesian framework
where averaging i1s naturally made with respect to the prior distribution of the parameter, but
in a frequentist context it is difficult to interpret. Nevertheless, it may be potentially useful in
some situations.

Results show that the Sterne interval is superior in terms of minimum as well as mean
coverage to all other intervals examined. This means that (i) its coverage probability is less
fluctuating, (ii) in the case of equal mean coverage its minimum coverage is higher (the “worst
case risk’ is less), and (iii) its total interval width is about the same or even a little less.
For illustration, Figure 1 presents the coverage graphs of the score and the Sterne intervals.
The Sterne interval exhibits a more regular, less fluctuating coverage function even for large
samples. Note that it remains better than the score interval even if attention is restricted to

Copyright © 2003 John Wiley & Sons, Ltd. Statist. Med. 2003; 22:611-621
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Figure 1. Coverage functions of the score and the mean coverage adjusted Sterne interval (true parameter
value on the x-axis, coverage probability on the y-axis).

the parameter range of [0.1,0.9] where the score interval is regarded to perform acceptably
(results not reported here).

Concerning the adjusted Wald interval, the present results support those reported by Agresti
and Coull [3] about its superiority to the score interval. This is particularly important at the
99 per cent level where even the mean coverage of the score method is below the nominal
99 per cent.

We found that the level-adjusted C—P interval is practically equivalent to the mid-P inter-
val (if adjusted to have the same confidence coefficient as the mid-P interval). This rather
surprising thing means that the ‘better performance’ of the mid-P interval is purely due to its
reduced confidence level, that is, the same performance can be reached by simply reducing the
level of the C-P interval to the same extent. Thus, the only advantage of the mid-P interval
is that the procedure does this level reduction automatically, so the users do not need to think
about what they are willing to lose in terms of minimum coverage.

As our results suggested that the actual level of the mid-P interval does not converge to the
nominal one, we determined its asymptotic minimum coverage, derived from the asymptotic
probabilities of its acceptance regions (Section 3). Since for any A the binomial probabilities
with p = //n converge to the Poisson probabilities with A, binomial acceptance regions as well
as their probabilities converge to those of the corresponding Poisson. Thus, these probabilities
can be determined by applying the mid-P method to test the Poisson parameter (that is,
Hy: 4.= /). By numerical evaluation of all acceptance regions of this test for io=0 to 30
with steps of 0.001, minimum probabilities at the 90, 95 and 99 per cent level turned out to
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Table IV. Ninety per cent acceptance regions of the Clop-
per—Pearson interval (solid line) and the Steme interval (dotted
line). For X =0, the Sterne interval is not contained in the C—P.

X 2

0.348 0.350 0.352 0.354
7 0.0006 0.0006 0.0007 0.0007
6 0.0081 0.0084 0.0086 0.0089
5 ' 00456 |  0.0466 0.0477 f0.0487
4 P 0.1423 Po0.1442 0.1462 L 0.1482
3 0.2666 P 02679 £ 0.2692 L 02704
2 {0.2997 02085 i 0.2973 f0.2961
| f0.1871 {01848 0.1824 f0.1801
0 I 0.0501 f0.0490 f0.0480 0.0469

be 0.8574 (at iy =4.275), 0.5165 (4;=3.061) and 0.9861 (1o =13.570), respectively. This
means that the mid-P interval fails to be asymptotically exact.

Blaker [12] has proposed a new exact interval recently, which is a very good alternative
to the Sterne interval. The method has much common with the Steme interval. It is based
on inverting the exact test with acceptance regions including the most ‘acceptable’ values of
the binomial variable, where acceptability of a value x is defined by the foliowing function
{called the ‘acceptability function’):

i=0

ACC(x) = min {7 by (1.3 By, ,)m}
J=x

where b, ,(.) denotes the probability mass function of the binomial distribution with parame-
ter p. To form the acceptance region, the most ‘acceptable’ values are taken until the desired
level (for example, 95 per cent) is reached. This is clearly parallel to the definition of Sterne’s
acceptance region where the most probable values are taken in the same way. Blaker’s inter-
val is also inherently two-sided and its minimum coverage is always practically equal to the
desired. Note that the definition of the acceptability function ensures that Blaker’s interval is
always contained in the C-P interval, which is not always true for the Sterne interval (see the
example below). Otherwise the performance of the Blaker and the Sterne intervals is about
the same; although the Sterne interval is typically (but not always) a little shorter and shows
a little less coverage fluctuation, the difference is practically irrelevant.

The following example illustrates that the Sterne interval is not always contained in the
C—P (Table 1V). In this example, the upper endpoint of the Sterne interval belonging to
X =0 goes beyond the corresponding C—P endpoint. It is clear that from p=0.350 up, since
P(X =0)<0.05, X =0 is not included in the C—P acceptance region. However, as the Sterne
acceptance region consists of the highest probabilities, it includes X =0 rather than X =5 until
P(X =0)>P(X =35) holds, that is, up to p=0.354. That is, the Sterne test will not exclude
an outcome with a higher probability in favour of another outcome with lower probability,
whereas the C-P, handling the two tails independently of each other, may do this. In fact,
this phenomenon is of theoretical importance only, as it occurs rarely and the difference is
usually rather small.
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Table V. Properties of the adjusted Wald and the Sterne interval for n = 1000.

Nominal Minimum coverage Mean coverage (root MSE) Total length
level Sterne/adjusted Wald terne/adjusted Wald Sterne/adjusted Wald
90% 0.9000/0.8832 0.9048 (0.0052)/0.9014 (0.0072) 41.225/40.907
95% 0.9500/0.9438 0.9527 (0.0030)/0.9511 (0.0041) 49.029/48.765
99% 0.9900/0.9890 0.9907 (0.0007)/0.9904 (0.0011) 64.337/64.153

8. CONCLUSION

Based on the results, we recommend using the Sterne interval (or the mean coverage adjusted
Sterne interval if mean coverage is of interest) up to n= 1000 and the adjusted Wald interval
beyond that. The Sterne interval can be replaced by Blaker’s interval [12]. For one-sided
intervals, the C—P method should be used up to n=1000. Note that when switching from the
exact to the asymptotic method, both the minimum and the mean coverage as well as the
mterval length becomes a little smaller (Table V).
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