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QUANTIFYING PARASITES IN SAMPLES OF HOSTS
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ABSTRACT: Whereas terminological recommendations require authors to use mean intensity or mean abundance to quantify
parasites in a sample of hosts, awkward statistical limitations also force them to use either the median or the geometric mean of
these measures when making comparisons across different samples. Here, we propose to reconsider this inconsistent practice by
giving priority to biological realism in the interpretation of different statistical descriptors and choosing the statistical tools
appropriate to our decisions. Prevalence, mean intensity, and indices of parasite distribution (such as median intensity) are suitable
descriptors to quantify parasites in a sample of hosts. These measures have different biological interpretations and need different
statistical methods to be compared between samples.

Intensity and abundance (5relative density) are among the
most important descriptors one must use when quantifying par-
asite numbers in a host sample or population. Intensity is de-
fined as the number of conspecific parasites living in (or on)
an infected host, and abundance is defined as the number of
conspecific parasites living in (or on) any host (intensity . 0,
abundance $ 0). Recommendations that aim to establish a con-
sistent terminology of ecological parasitology and also to pro-
vide a conceptual basis for this discipline strongly recommend
the use of mean intensity and mean abundance to characterize
samples of hosts (Margolis et al., 1982; Papp, 1987; Bush et
al., 1997). Mean intensity is the arithmetic mean of the number
of individuals of a particular parasite species per infected host
in a sample. Mean abundance is the arithmetic mean of the
number of individuals of a particular parasite species per host
examined.

To compare mean intensity or mean abundance of parasites
obtained from 2 or more different samples, one would use Stu-
dent’s t-test or other parametric procedures like ANOVA, if
parasite distributions were not known to be aggregated (Crof-
ton, 1971). Thus, parasitologists often prefer to use nonpara-
metric tests like Mann–Whitney’s U-test or Kruskal–Wallis test
that have the advantage of being distribution free but actually
compare other characteristics of the distributions instead of
means. Consequently, parasitologists speaking about sample
means according to terminological recommendations and actu-
ally comparing other characteristics of samples may get sur-
prising results. Let us imagine 2 samples of hosts each con-
taining 10 infected individuals:

Sample A: 1, 1, 1, 1, 1, 1, 1, 1, 2, 50;
Sample B: 1, 1, 2, 2, 2, 2, 3, 3, 4, 10.

There is a striking inconsistency between reporting and analyz-
ing the above data, i.e., intensity is 2 times higher in sample A
than in sample B (means: 6, 3), whereas a statistical comparison
(Mann–Whitney U-statistic) will indicate that intensity is sig-
nificantly lower in sample A than in sample B. Should we
change our terminology or the usual statistical analysis? Bush
et al. (1997) recommended the use of mean intensity and mean
abundance like previous authors (Margolis et al., 1982) but also
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maintained that ‘‘in some cases, median intensity or modal in-
tensity will be appropriate substitutes for mean intensity’’ and
they made a similar statement for abundance too. In what sense
can median substitute mean?

As an alternative, log transformation may sometimes help to
normalize data, though it fails when dealing with highly aggre-
gated parasites. Typically, authors log transform (log[x 1 1])
raw values of either intensity or abundance, calculate the mean
of the transformed data, and then back transform the mean to
obtain the so-called geometric mean. The reason for this pro-
cedure is that it hopefully fixes the skewness of the parasite
distribution. One should keep in mind that it works perfectly
only if the frequency distribution of parasites is log normal, so
that it can be normalized by log transformation.

In the present paper, we aim to summarize the properties of
the different measures and to argue that their biological inter-
pretation is markedly different. Then, we give basic recom-
mendations on how to provide quantitative data on the occur-
rence of parasites and how to compare these data. The recom-
mendations outlined below are consistent with Margolis et al.
(1982), Papp (1987), and Bush et al. (1997).

PROPERTIES AND INTERPRETATION OF DIFFERENT
MEASURES

Imagine that one aims to publish the quantitative results of
a faunistic survey on parasites. Definitely, host sample size (N)
and prevalence (%) must be provided. Now, there are 6 basic
choices for describing parasite quantities, i.e., mean intensity,
mean abundance, median intensity, median abundance, geo-
metric mean intensity, and geometric mean abundance. Most
parasitologists prefer to use mean intensity and typically they
also provide 6SD.

In general, it seems reasonable to prefer intensity to abun-
dance. A sample can be split into 2 parts, uninfected and in-
fected. Prevalence provides information about the relative sizes
of these 2 parts, and uninfected hosts cannot be further char-
acterized. Infected hosts can be characterized by intensity that
therefore provides information logically independent of preva-
lence. Abundance, on the other hand, carries information partly
in common with that of the prevalence. Additionally, the dis-
tribution of intensity may be a little bit less skewed than that
of the abundance; therefore, its confidence interval can be a
little more precise and informative (see below).

An advantage of preferring means to medians is that given
the prevalence, mean abundance can easily be calculated from
mean intensity or vice versa. A further advantage is that the
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expected value of the mean does not depend on sample size
(Fulford, 1994) (Fig. 1A, D). Furthermore, mean intensity
varies independently of prevalence (Fig. 1G). Thus, providing
sample size, prevalence, and mean intensity does not cause re-
dundancy in the information. Mean abundance carries the same
information as mean intensity does, but it correlates with prev-
alence (Fig. 1J). A disadvantage of the mean is that its value
is highly dependent on a few, extremely high, individual inten-
sities (the large infrapopulations). Because of the aggregated
nature of parasite distributions, a high proportion of parasites
is concentrated on a few host individuals, and this may result
in a wide confidence interval.

In contrast, preferring medians instead of means may make
it necessary to present measures of both intensity and abun-
dance, because median intensity does not predict median abun-
dance and vice versa. Both sample size and prevalence affect
median intensity (Fig. 1B, H) as well as median abundance
(Fig. 1E, K). Especially, prevalence below 50% implies that
median abundance is 0 (Fig. 1K). Thus, it may happen that
median intensity or median abundance does not add much if
any to the information provided by sample size and prevalence.
Although the comparisons of medians are distribution free, me-
dians themselves are not. This is because they are indices that
characterize the parasite distribution; thus their values will def-
initely correlate with other measures of this distribution.

The geometric mean, like the median, is not sensitive to the
effects of a few large infrapopulations. It appears to correlate,
however, with sample size (Fig. 1C, F) and prevalence (Fig. 1I,
L) (Fulford, 1994).

We suggest that the biological interpretation of mean, me-
dian, and geometric mean measures should be clearly distin-
guished. Mean simply refers to the quantity of parasites. Pro-
vided that host sample size (N) and prevalence (%) are known,
which is a basic requirement, either mean intensity or mean
abundance refers exactly to the total number of parasite indi-
viduals in the whole sample. On the other hand, the median of
either intensity or abundance signifies typical levels of infec-
tion. The geometric mean of either intensity or abundance has
no clear biological interpretation. It does not give us the total
number of parasites nor the most typical intensity class. It is a
statistical construction aimed to produce a statistically better
distribution but has not much to do with biological reality.

Basically, the most informative way to quantify the occur-
rence of parasites in a sample of hosts is to describe the fre-
quency distribution of parasites (this is simply a histogram of
abundance or intensity). It can either be tabulated or illustrated
graphically. If it is not possible to provide it, one has to consider
what kind of information is preserved and what is lost when
reporting either the mean, or the median, or the geometric mean
of intensity or abundance. It may well be reasonable to include
several different measures that carry different information about
the hosts and the parasites found in the sample and that can be
used for different purposes later.

RECOMMENDED WAY OF PRESENTING QUANTITATIVE
DATA

Always report host sample size (N) and prevalence (%). Op-
tionally, also give a confidence interval for the prevalence based
on the binomial distribution (Bush et al., 1997). Report the

mean intensity to give information on the total quantity of par-
asites in the sample. Providing standard deviation (6SD) of the
mean is useless for aggregated distributions exhibited by par-
asites. A confidence interval for the mean intensity can be con-
structed by normal theory only if the number of infested indi-
viduals is large enough ($30) in the sample. Otherwise, the
bootstrap confidence interval (BCa) of Efron and Tibshirani
(1993) should be used (Appendix I). However, one cannot ex-
pect an accurate estimate if the majority of the parasite popu-
lation is from a very few hosts. Report the frequency distribu-
tion of parasites, i.e., the histogram of intensity or abundance.
If prevalence is low, a histogram of abundance is less infor-
mative. If it is not possible to include histograms, provide a
box-and-whiskers plot, or quartiles or percentiles of the distri-
bution, or at least the median intensity to give some information
about the distribution. In this case, also give a confidence in-
terval for median intensity (see Appendix II). Geometric mean
intensity and its confidence interval can sometimes substitute
median as an alternative measure of the frequency distribution
of parasites. Provided that the normality assumption holds for
the log-transformed data, the confidence interval of the geo-
metric mean can be calculated by standard statistical procedures
and then back transformed to the original scale. Also provide
a measure to characterize the skewness of the distribution, such
as the variance to mean ratio, the exponent k of the negative
binomial model (Krebs, 1989), or the discrepancy index as de-
fined by Poulin (1993).

STATISTICAL COMPARISONS

Compare prevalences by chi-square test or, preferably, by
Fisher’s exact test. Keep in mind that this comparison does not
refer to the quantities of parasites, rather it shows whether the
proportions of infested hosts are significantly different between
the samples.

Compare mean intensities. This comparison may indicate
whether the total numbers of parasites are significantly different
between the parasitized parts of the samples. Comparisons
based on normal theory such as Student’s t-test or ANOVA are
usually not applicable for parasites because of the skewness of
their distribution. Bootstrap tests are recommended (Appendix
III), though the power of the test is rather low when the ma-
jority of parasites is concentrated on very few hosts.

Compare the frequency distributions of parasite intensities.
This comparison indicates whether the typical levels of infec-
tion tend to be different between the parasitized parts of the
samples. Distributions are compared by chi-square test, or by a
generalized version of Fisher’s exact test, or by rank-based pro-
cedures like Mann–Whitney’s U-test and the Kruskal–Wallis
test. Randomization tests may also offer useful tools to test
differences between distributions (see e.g., Thomas and Poulin,
1997). If medians themselves are of particular interest, Mood’s
median test (Appendix IV) can be applied for comparisons.

In general, publishing confidence intervals for all measures
is advisable because they give information about the uncertainty
of the estimates, thus enabling a comparison at a glance. Con-
fidence intervals should preferably refer to the confidence level
$ 95%, but other levels (say, confidence level $ 90%) may be
reasonable too.
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FIGURE 1. Different measures of louse numbers as functions of host sample size (N) and prevalence (%) are illustrated here using 23 samples
of avian lice (Phthiraptera: Amblycera, Ischnocera) harbored by 12 samples of birds (Aves). Mean intensity (A) and mean abundance (D) do not
correlate with sample size (linear regression: P 5 0.804, P 5 0.271, respectively), while measures of the median (B) and geometric mean of
intensity (C), and the median (E) and geometric mean of abundance (F) are affected by sample size (linear regression, P 5 0.001, P 5 0.033, P
, 0.001, P , 0.001, respectively). Mean intensity (G) does not correlate with prevalence (linear regression: P 5 0.936), while the median (H)
and the geometric mean of intensity (I), and the mean (J), the median (K) and the geometric mean of abundance (L) are affected by prevalence
(linear regression: P 5 0.005, P 5 0.020, P 5 0.024, P , 0.001, P , 0.001, respectively). Data were obtained from Fowler and Miller (1984),
Fowler and Hodson (1988), Fowler and Shaw (1989), Fowler and Hodson (1991), Clark et al. (1994), Lee and Clayton (1995), and Rékási et al.
(1997).
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DISCUSSION

Which sample of hosts is more parasitized? Because the
above 3 kinds of comparisons focus on 3 different measures of
parasitism that have markedly different biological interpreta-
tions, they may yield contradictory answers to the above ques-
tion. One may say that sample A is more parasitized than sam-
ple B if all 3 comparisons correspond with this conclusion. On
the other hand, if different comparisons yield contradictory an-
swers, one cannot tell which sample is more parasitized; rather
a more specific question and a more complex interpretation of
data are needed to describe the difference between levels of
parasitism in different samples of hosts.

We believe that the current practice of presenting and com-
paring quantitative results of parasitological surveys could be
improved by considering the biological interpretations of statis-
tical descriptors and comparisons. Recent developments in bio-
statistics, like randomization tests and bootstrap, offer powerful
tools enabling us to choose the ones appropriate to our biolog-
ical decisions. A computer program for IBM PC to perform the
computations described in the appendices is available from the
authors.
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APPENDIX I: BOOTSTRAP CONFIDENCE INTERVAL FOR
THE MEAN

Confidence intervals based on normal theory perform poorly
for skewed distributions, in particular if the sample is small,
but BCa (bias-corrected and accelerated) bootstrap confidence
intervals proposed by Efron and Tibshirani (1993) offer a so-
lution even in such cases. Let x denote the sample mean and F
its bootstrap cumulative distribution function (c.d.f.) estimated
by resampling. The a level endpoints of the BCa confidence
interval for the population mean (e.g., for 95% confidence level,
a 5 0.025 and 0.975 should be used) are calculated by the
following formula

(a)z 1 z0(a) 21l 5 F F z 10 (a)5 6[ ]1 2 a(z 1 z )0

where F is the standard normal c.d.f., z(a) is its a level critical
value, z0 5 F21{F(x̄)}, and a is calculated from the jackknife
values of the sample mean according to

n
3(l 2 l )O (.) (i)

i51a 5 3/2n
26 [l 2 l ]O (.) (i)5 6i51

where l(i) denotes the jackknife value with the ith sample point
deleted, and l(.) denotes the average of all l(i) values.

APPENDIX II: DISTRIBUTION-FREE CONFIDENCE
INTERVAL FOR THE MEDIAN

Let x1
*, x2

*, . . . xn
* denote the ordered sample. A distribution-

free confidence interval for the median can be constructed by
simply choosing 2 elements xi

* and xj
* of the ordered sample.

The confidence level for (xi
*, xj

*) can be obtained as pi 1 pi11

1 . . . 1 pj21 where the pk’s are the binomial probabilities with
parameters n and p 5 0.5, i.e., pk 5 ( )0.5n (Arnold et al., 1992).n

k

A strategy to choose 1 of these possible confidence intervals is
to start with the broadest, i.e., with (x1

*, xn
*), and then make it

narrower and narrower, leaving out points from the 2 ends until
we reach the required confidence level (e.g., 95%). As the con-
fidence level decreases in steps when we leave out a sample
element (or more elements if there are ties), it is not always
possible to construct a confidence interval with exactly the re-
quired level, say, 95%.

To illustrate all this, let us have an example with a sample
of size 12 (Fig. 2). At each step of narrowing the interval, 1
element is removed from that side where it gains a greater de-
crease of interval width. For a confidence level of 95%, one
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FIGURE 2. Confidence intervals for the median intensity of a sample
of 12 infested hosts. At each step of narrowing the interval, 1 element
is removed from that side where it gains a greater decrease of interval
width. For the confidence level $ 95%, one has to outline the 4–25
interval.

has to outline the 4–25 interval, i.e., the confidence interval of
the nearest confidence level above 95%.

APPENDIX III: DISTRIBUTION-FREE COMPARISON OF
MEAN INTENSITIES

Let us have 2 samples, x1. . . xn, and y1. . . ym with sample
means x̄ and ȳ and sample variances s and s . Measure the2 2

1 2

difference between the mean values by the studentized statistic

x̄ 2 ȳ
t 5 .observed 2 2Ïs /n 1 s /m1 2

Transform the 2 samples to have a common mean by, e.g., ẋi

5 xi 2 x̄ and ẏj 5 yj 2 ȳ. Now we have 2 samples that have
equal mean values, so we can use bootstrap resampling to de-
termine the null distribution of the above statistic t by drawing
samples of n and m with replacement from the ẋi and ẏj values
(Efron and Tibshirani, 1993). Let x , x . . . x and y , y . . .(B) (B) (B) (B) (B)

1 2 n 1 2

y denote these samples, x̄(B) and ȳ(B) their sample means, and(B)
m

s and s their sample variances. Calculate the above test2(B) 2(B)
1 2

statistic for the bootstrap samples

(B) (B)x̄ 2 ȳ
t 5 .bootstrap 2(B) 2(B)Ïs /n 1 s /m1 2

The bootstrap P-value is defined as

number of bootstrap samples with t $ tbootstrap observed
P 5 .

total number of bootstrap samples

The use of 1,000 or more samples is recommended.

APPENDIX IV: DISTRIBUTION-FREE COMPARISON OF
MEDIAN INTENSITIES BY MOOD’S MEDIAN TEST

Let us have 2 samples again, x1, x2, . . . , xn and y1, y2, . . . ,
ym and let M denote the median of the combined sample. We
are going to test ‘‘H0: the samples come from distributions with
equal medians’’ against ‘‘H1: the samples come from distribu-
tions with unequal medians.’’ Note that here, unlike the Mann–
Whitney test, we do not need to assume that the 2 distributions
are of identical shape. Let us construct the following 2 3 2
table:
.

#M .M Total

Sample 1
Sample 2

na
m1

n2 5 n 2 n1
m2 5 m 2 m1

n
m

Under H0, the rows of this table are proportional (except random errors),
which does not hold under H1. The proportionality of rows can be tested
by applying a standard chi-square test or preferably Fisher’s exact test.
The test assumes that the distributions are continuous, i.e., if there are
many ties at the median value, it will not work well. The extension to
a multisample situation is straightforward. In case of k samples, it leads
to a k*2 table where homogeneity of the rows can be tested similarly
(Sen, 1998).


