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When comparing two variables with nonnormal distributions, 

application of the Wilcoxon-Mann-Whitney test (WMW) is a 
common choice. However, it is only valid to test the null hy 

pothesis stating equality of the distributions. Sometimes the hy 
pothesis of interest is H0 : P(X < Y) 

= 
P(X > Y) against 

P(X < Y) ^ P{X > Y), called stochastic equality and in 

equality. Here we propose a bootstrap test for this problem. Re 

sults of an extensive simulation study based on empirical dis 

tributions suggest that the new test is valid for a wide range of 

problems in parasitology and psychology, and the loss of power 
as compared to WMW is rather small in those cases when both 
tests are applicable. 

KEY WORDS: Brunner-Munzel test; Mann-Whitney [/-test; 
Rank Welch test; Stochastic equality; Wilcoxon rank sum test. 

1. INTRODUCTION 

Nonnormal distributions are typical in several biom?dical ap 
plications. Count variables, which do not take negative values, 

but may take very large positive values, usually exhibit rather 
skewed distributions. For example, in parasitology, intensity of 
infection is a variable of this type, defined as the number of par 
asites living in an infected host individual (Bush, Lafferty, Lotz, 
and Shostak 1997). Nonnormality of parasite intensity distribu 
tions is impressively illustrated by Figure 1 (graph is made by 
QP 2.0, Reiczigel and R?zsa 2001). Similar problems are doc 
umented in many other application areas, for example, in cost 

analysis (Rascati, Smith, and Neilands 2001; Zhou, Gao, and 
Hui 1997; Zhou, Li, and Gao 2001) or in psychology (Micceri 
1989; Delaney and Vargha 2002). For the analysis of nonnormal 

data, statistics textbooks recommend the use of nonparametric 

methods, such as the Wilcoxon-Mann-Whitney (WMW) test for 
the comparison of two independent samples (Wilcoxon 1945; 

Mann and Whitney 1947). However, the standard assumption 
of the WMW test cited in many textbooks, the so-called shift 

model, or shift alternative, usually does not hold in these cases. 

Under the shift model, it is assumed that the distributions to 
be compared have the same shape, allowing only for a poten 
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ti al shift of location, that is, the distributions to be compared 
are F(x) and G(x) 

= 
F(x + d), with the null hypothesis of 

Ho '. d = 0. The distributions in Figure 1 seem to be quite far 
from satisfying such an assumption. Even theoretically, the shift 
alternative would imply, for example, that parasite infection in 

tensity may take negative values (which is simply nonsense) or 

conversely may exclude low intensity values near 0 (which is 

quite unrealistic). Unfortunately, the level of the WMW test is 

seriously affected by the violation of the shift model even for 

large samples (Pratt 1964; Skovlund and Fenstad 2001). In fact, 
the distributions do not really need to have different shapes, a 

pure scale difference is enough to result in considerable alpha 
inflation (it can be observed, e.g., if two uniform distributions 
are compared with the same center of location but with different 

ranges). 

Some authors concluded that, contrary to the textbook rec 

ommendations, it is still better to apply the usual parametric 
tests even in case of nonnormality. For example, Skovlund and 

Fenstad (2001), comparing the Type I error rates of three tests 

(Student-t, Welch-t, and WMW) under various circumstances, 

found that the Welch test (Welch 1938) performs best, as it 

produces practically no alpha inflation. However, the WMW 
test is not so much related to the comparison of means as to 

the hypothesis of H0 : P(X < Y) 
= 

P(X > Y) against 
P(X < Y) ^ P(X > Y), also called stochastic equal 
ity/inequality (Vargha and Delaney 1998, 2000). Although there 
are other generalizations of WMW keeping the original i/o and 

testing it against the so-called stochastic ordering alternative? 

that is, i/0 F(x) 
= 

G(x) against F(x) < G(x) with strict in 

equality for some x values (Kochar 1978; Deshpande and Kochar 

1980; Ahmad 1996; Priebe and Cowen 1999)?here we focus 
on the above hypothesis test. There are procedures developed 
just for this particular problem (Zimmerman and Zumbo 1993; 
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Figure 1. Empirical frequency distributions of parasite infection inten 

sity. 
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Delaney and Vargha 2002; Brunner and Munzel 2000). Here we 

propose a bootstrap test for the same purpose. 

Section 2 briefly describes the WMW, the rank Welch test 

(RW), and the Brunner-Munzel test (BM), and their relation to 

testing for stochastic equality. Section 3 introduces the new boot 

strap test. Section 4 presents a simulation study on the level and 

power of the new test, comparing it to the other tests. Sections 

5 and 6 explain the results and summarize the conclusions. 

2. THE WMW TEST AND RELATED PROCEDURES 
Several equivalent formulations of the WMW test can be 

found in the literature, expressed in terms of various models, hy 

potheses, and test statistics. Here the variables to be compared 
are denoted by X and Y, their cdf's by F(x) and G(x), and 
the samples by x = 

(xi,x2,.. , xn) andy 
= 

(y1, y2,... ,ym), 

respectively. The test statistic can be written as 

tf=?i+?i/2. 
Xi<Vj Xi=y3 

The distribution of U under the null hypothesis of the shift 

model, Ho : F = G can be determined using a permutation 
argument, that is, that all possible orderings of the values in the 

pooled sample are equally likely. For sample sizes ra, n > 10, 

the null distribution of U is approximately normal with mean 

Pu 
= 

nm/2 and variance 

2 nm(n + m + 1) 

(Mann and Whitney 1947). (In case of many ties, the formula 
for the variance needs an additional correction factor.) Thus, the 

statistic 

U - 
pu 

z = - 

(TU 

is approximately standard normal. The relation of the WMW test 
to the hypothesis of stochastic equality was defined by Vargha 
and Delaney (1998)?that is, the hypothesis of P(X < Y) 

= 

P(X > Y) is explained by the fact that (U/nm) is an estimator 
of P(X < Y) + 1/2P(X 

= 
Y). (Note that in case of contin 

uous variables the second term vanishes.) Thus, the WMW test 

is sensitive only to such differences between F and G, which 
involve stochastic inequality of the two distributions. Several 

attempts have been made to replace the original Ho : F = G 
with a less restrictive one. Certainly the most desirable one 
would be the general hypothesis of stochastic equality, that is, 
Ho'- P(X <Y) 

= 
P{Y < X), as this is the natural question of 

interest in many practical situations (McGraw and Wong 1992; 
Vargha and Delaney 2000). Conover and Iman (1981) pointed 
out that the WMW test is equivalent to a Student-t test applied 
to the ranks of the sample elements in the pooled sample. Based 
on this, Zimmerman and Zumbo (1993) proposed applying the 

Welch test to the ranks in the hope that the test remains valid 
for the general H0 : P{X < Y) 

= P(Y < X). Their results 

suggest that RW is really superior to WMW, but it may also 
show some alpha inflation in certain cases (Delaney and Vargha 
2002). 

To define the rank Welch test, let r\j(j 
= 1,..., n\) and 

T2k(k 
= 1,..., n2) denote the ranks of values of x (sample 1) 

and y (sample 2) in the pooled sample. Furthermore, let r\, r2, 

and Si, s2 denote the means and variances of v\3 and 7*2/0 re 

spectively. With this notation, the test statistic of the rank Welch 
test can be written as 

?RW = (r2 

The null distribution of ?rw is approximated by a Student-t 
distribution with degrees of freedom 

o2 , ?^2 
2 

[n2s\ + msi) 
/rw = 7?^2?/?T\ 

Tli 
? 

1 712 
? 

1 

Brunner and Munzel (2000) proposed a test which is proven to 
be asymptotically valid. The test statistic is 

n1n2(r2-fi) 

(ni + n2) \/??sf + n2S2 

where n?(z 
= 

1,2) denote the sample sizes, r?(? 
= 

1,2) denote 
the mean rank of the ith sample within the pooled sample, and 

sf(i 
= 1, 2) is defined as follows: 

2 1 V^ / - , ni + 1 

7?? 
? 1 f?' 

where r^/e and 1^(2 
= 

1, 2; /c = 1, 2,..., n?) are the rank of the 

kth measurement in the pooled sample and within its originating 
sample, respectively. The asymptotic distribution of ?bm is stan 
dard normal, but for small samples Brunner and Munzel (2000) 
proposed to use Student's-t distribution as an approximation, 
with degrees of freeedom 

(nis? + n2s22)2 
djBM 

~ - 

(msj) (n2s22y 
Tli 

? 
1 77,2 

? 
1 

Other tests for stochastic equality were also proposed and evalu 

ated by simulation; see, for example, Delaney and Vargha (2002) 
and references therein. 

3. THE PROPOSED BOOTSTRAP TEST 
The proposed method applies the bootstrap principle to test 

ing Ho : P(X < Y) 
= 

P(X > Y). It is based on the rank 
Welch test statistic ?rw above. Following the usual method of 

bootstrap hypothesis testing (Efron and Tibshirani 1993), first 
the two samples x and y are transformed into x7 and y' so as to 

satisfy the null hypothesis, that is, to be stochastically equal, pos 
sibly preserving all other characteristics of them. Then the null 
distribution of ?rw is obtained by resampling from the stochas 

tically equal distributions x7 and y', that is, by drawing B boot 

strap sample pairs of size 711 and 712 with replacement from x' 

and y', and calculating the test statistic for each sample pair 

(^rw ' ̂ = 1, 2,... P). Based on this simulated null distribu 

tion, the bootstrap p value is obtained as 

? E Pl B 
+ ->,*(fc) 
?RW>?RW 
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or 

in case of a one-tailed test, and p 
= 

2min{pi,_p2} for a two 

tailed test. 
The transformation of x and y into x7 and y' should reflect 

the characteristics of the distributions that are regarded as most 

important to preserve when adjusting the samples to satisfy the 
null hypothesis. Selection should always be based on consid 
erations relevant to the specific application area as well as on 

statistical considerations (Davison and Hinkley 1997, p. 163). 
In fact, it is sufficient to transform just one of the samples, say 
y, to make it stochastically equal to x. In the present study, three 

potentially useful transformations were tried and a sensitivity 
analysis was made to compare the behavior of the bootstrap test 

with each of these transformations. The first one is the shift trans 
formation (1), which is generally applied in relation with two 

sample tests (Efron and Tibshirani 1993). The shift constant c\ 
can be obtained as the median of the values Xi 

? 
yj. For skewed 

distributions with a theoretical minimum w > 0, the stretch 
transformation (2) seems to be more natural, as it preserves the 

minimum w and the skewness. Note that in case of w = 0 the 

formula reduces to (2a). The appropriate stretch constant c2 can 

be obtained as the median of the values (x? 
? 

w)/(yj 
? 

w).ln 
case of w > 1, another potentially useful transformation is the 

power transformation (3), in which the appropriate exponent c% 
can be obtained as the median of the values ln(a*?)/ rn(?/?). 

2/= 2/ +ci, (1) 

y' 
= 

c2(y-w) +w, (2) 

y' = C22/, (2a) 

y' 
= 

yC3- (3) 

Based on the sensitivity analysis, the usual shift transformation 

(1) was found to be most appropriate. Briefly, the other two 

transformations, while adjusting the distributions for stochastic 

equality, also change the ratio of the variances, which results in 

biased bootstrap null distributions. Computer programs for the 

bootstrap test procedure (executable for MS-Windows as well 
as S-Plus code) are available on request from the first author. 

4. SIMULATION STUDY 
The aim of the simulation study was to determine the level 

and power of the new test (bootstrap rank Welch test, BRW) 
and compare it to those of WMW, RW, and BM. Power was 

analyzed even in those cases when the assumptions of WMW 

held; given the power of the BRW is approximately the same as 
that of WMW, then BRW can substitute the other one without 

respect to the assumptions. 
The simulation study was based mainly on empirical distri 

butions: beyond a few theoretical distributions (uniform, Gaus 
sian, and bimodal, the latter represented by a mixture of two 

Gaussians), 15 empirical parasite intensity distributions, and 50 

empirical distributions of variables of the Rorschach test were 

included. Empirical distributions are considered to represent the 
extent of alpha inflation that may be expected if applying the 

WMW test in everyday practical situations in parasitological 
or psychological research. In fact, several authors pointed out 

that using realistic data and distributions in simulation stud 
ies is more convincing than results based on data from purely 
theoretical distributions (Bridge and Sawilowsky 1999; Micceri 

1989). Parasite distributions are based on empirical distribu 
tions of avian lice (for the sources of data see R?zsa, Reiczigel, 
and Majoros 2000). Rorschach distributions are based on data 
of 359 normal subjects, published in the tables of the Hungar 
ian Rorschach Standard (Vargha 1989). All variables are in the 
form of number of occurrences in the Rorschach protocol di 
vided by the total response number and multiplied with 100. 
Results are reported for seven pairs of distributions, represent 

ing typical patterns experienced in the simulation study. The dis 
tribution pair Uniform-Uniform with P(0,100) and ?7(40, 60) 
illustrate the potential alpha inflation of the tests purely due 
to the different variances. The pair Unimodal-Bimodal (Gaus 
sian with ?i 

= 
3, a = 

.3, and 50-50% mixture of Gaussians 

with /ii 
= 

2, ?i2 
= 

3, g\ = o2 = 
.4), as well as the pair 

Bimodal-Bimodal (29-71% mixture of Gaussians with ?i\ = 4, 
?i2 

= 
8, o\ = 

o2 = 
.6, and 71-29% mixture of Gaussians with 

//i 
= 

2, \i2 
= 

6, G\ 
= 

o2 = 
.6) illustrate the effects of serious 

shape differences between distributions. The first pair of parasite 
distributions represents infection intensity of two louse species 
(Brueelia tasniamae and Philopterus ocellatus) collected from 
rooks (Carvus frugilegus). The second pair represents intensity 
of two louse species (Anatoecus dentatus and Trinoton luridum) 
from mallards (Anas platyrhychos). Concerning the Rorschach 

variables, results are reported for the following ones: human 

movements (HM%), associated movements (AssocM%), num 

ber of responses on card 2 (RN2%), and defect references to 
color or shading (Defect C+Sh%). Their density graphs (made 
by S-Plus 2000) are shown in Figure 2. 

Each distribution was represented by 300 values, correspond 
ing to the equidistant quantiles (1/300 quantiles) of the dis 
tribution. For level analysis, distributions were adjusted to be 

stochastically equal, while for power analysis, they were trans 

formed to be stochastically unequal, so that P(X < Y) 
= .3 and 

P(X > Y) 
= .7. Theoretical and Rorschach distributions were 

adjusted by the shift transformation (1), while parasite distribu 
tions, in order to produce realistic distributions, were adjusted 
by the stretch transformation (2). As infection intensity is de 
fined only for infected hosts (Bush, Lafferty, Lotz, and Shostak 

1997), and so the minimum intensity is one parasite per host, 
w = 1 was used. 

To demonstrate actual level and power for all nominal levels 
rather than just for a selected one, we report the empirical cdf 
of the p value estimated from 10,000 sample pairs by sampling 
with replacement from the above populations. Sample sizes are 

set to 10, 30, and 90, representing small and medium sample 
sizes, typical in practical situations. All four tests (WMW, RW, 
BM, and BRW) were applied to these samples. In BRW 1,000 
bootstrap replications were used. Figures 3 and 4 display the 
results with respect to level for selected pairs of distributions 

(sample sizes of 90 gave quite similar results as sample sizes 
of 30, therefore not reported). The bootstrap test proved to be 
valid in the whole range of tested distributions at 5% (remain 
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Brueelia tasniamae 

Philopterus ocellatus (adjusted to Brueelia tasniamae) 

150 
infection intensity 

Anatoecus dentatus 

Trinoton luridum (adjusted to Anatoecus dentatus) 

0.08 

0.06 

0.04 

0.02 

0.00 

infection intensity 

Defect C+Sh% (adjusted to RN2%) 

h 0.4 
0.3 

Figure 2. Density graphs of distributions derived from empirical parasite intensity distributions and Rorschach distributions and adjusted to be 

stochastically equal for level analysis. Descriptive statistics (mean, D, skewness, kurtosis): Brueelia (44.2, 53.0, .92, -.85), Philopterus (26.9, 31.6, 

2.16, 4.67); Anatoecus (62.2,163.6, 3.07, 8.75),Trinoton (4.22, 2.53, 0.67, -.60), HM% (6.81, 5.65, 1.47, 2.87), AssocM%(6.59, 4.30, 1.84, 3.69), 

RN2%(9.18, 3.94, .84, 1.92), Defect C+Sh% (8.91, 1.07, 8.37, 86.6). 

ing below 6%), and slightly liberal at 1% (going up to about 

1.5%). BM performed well for samples > 30 and in case of 

not too extreme differences between the distributions also for 

n = 10, while WMW and RW showed considerable alpha infla 

tion throughout. Simulation with unbalanced sample sizes (10 
30 and 30-90) showed that alpha inflation of WMW was highest 
when the smaller sample was drawn from the distribution with 

greater variance, whereas for RW the converse occurred (results 

not reported). Figure 5 illustrates power properties for two pairs 
of uniform distributions. Graphs are quite typical, that is, very 
similar results were obtained for other distributions. 

5. DISCUSSION 
It is known (Pratt 1964; Skovlund and Fenstad 2001) that the 

WMW test may produce considerable alpha inflation even for 

large samples if the shift alternative does not hold. One could 

Sample size Uniform-Uniform Unimodal-Bimodal Bimodal-Bimodal 

10-10 

0.00 0.05 0.10 0.16 020 0.25 0.00 0.06 0.10 0.15 0.20 025 0.00 0.05 0.10 0.15 020 0.25 

30-30 

0.00 0.05 0.10 0.15 0.20 0.26 0.06 0.10 0.16 020 025 0.00 0.05 0.10 0.16 020 0.26 

Figure 3. Graphs of the empirical cdfs of the p values under H0: P(X<Y) = P(X>Y)for selected distributions. A certain (x, y ) point of a graph 
can be interpreted as the test has an actual alpha error rate of y at a nominal alpha ofx .Each graph is based on 10,000 pairs of random samples 
drawn from the given populations. The line y = xis also displayed (in gray) for information. 
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Sample size Brueelia-Philopterus oc. Anatoecus d.-Trinoton lur. HM%-AssocM% RN2% - Defect C+Sh% 

10-10 

30-30 

0.00 0.05 0.10 0.15 020 025 

0.00 0.05 0.10 0.15 020 025 

0.00 0.05 0.10 0.15 020 025 

0.00 0.05 0.10 0.15 020 025 

0.00 0.05 0.10 0.15 020 025 

0.00 0.05 0.10 0.15 020 025 

0.00 0.05 0.10 0.15 0.20 025 

0.00 0.05 0.10 0.15 020 025 

Figure 4. Graphs of the empirical cdfs of the p values under H0: P (X <Y ) = P (X >Y )for selected pairs of parasite intensity distributions and 
Rorschach distributions. 

think, however, that this is of theoretical interest only, and does 

not cause serious problems with real data in everyday practical 
situations. Contrary to this presumption, our simulations with 

realistic parasite and Rorschach distributions demonstrated that 

the actual alpha error rate may be about 10% instead of the 

nominal 5%. This implies that one should avoid using the WMW 

test in such cases. RW showed almost the same poor behavior, 
thus it should not be used either. Results are in line with those 

by Delaney and Vargha (2002). The proposed new bootstrap test 

had alpha level about the nominal (although slightly liberal at 

1%). BM also performed well for sample sizes >30. Similar 

results were obtained in case of one-tailed testing (results not 

reported here). 

Sample size U(0,100)-U(-22.7, 77.3) U(0,100)-U(19.9,39.9) 

10-10 

30-30 

0.00 0.05 0.10 0.15 0.20 0.25 

BM 
BRW 

0.00 0.05 0.10 0.15 0.20 0.25 

i-w-l WMW. 

0.8 \ sS\s^F^~~ 
oeJ/X^BM ]// BRW 
0.4 

|f 

0.00 0.05 0.10 0.15 0.20 0.25 

Figure 5. Graphs of the empirical cdfs of the p values under H1:P(X< 
Y) = .3,P(X>Y) 

= . 7 assuming uniform distributions. Note that although 
WMW and RW are shown in the second column too for information, these 
tests are inapplicable in that case. 

Simulations showed that WMW and RW, unlike BM, have se 

riously inflated alpha error rates even for large samples (n ? 90). 
For n < 30 smaller or bigger jumps of the p value cdf make 
BM also rather unsatisfactory. The location and size of these 

jumps depend on the distributions and sample sizes, resulting 
in a serious dependence of the alpha error rate on sample size 

(Table 1). It is embarrassing to see that drawing samples of 15 
or 16 from the same populations and performing the same test 
on them result in quite different alpha error rates. Similar jumps 
can be observed in relation with power as well (Figure 5). Such 

strong dependence on sample size may cause controversy be 

tween simulation studies using different sample sizes, or may 
lead to misleading results as round sample sizes like 10 or 15 
are more often used than 11 or 16. The existence of the jumps 
is a consequence of calculating the test statistic from the ranks, 
because the assumptions "all possible samples occur equally 
likely" and "all possible rank orderings occur equally likely" 

may well differ for some distributions. For example, drawing 
samples of two with replacement from populations A = {1,4} 
and B = 

{2,3}, there are 16 possible sample pairs but only 
six possible orderings. The assumption that all 16 samples are 

equally likely leads to the following probabilities in terms of or 

derings: P(AABB) = 4/16, P(ABAB) = 0, P(ABBA) - 8/16, 

P(BAAB) = 0, P(BABA) = 0, P(BBAA) = 4/16. If the test 
statistic is calculated from the ranks, then its values inherit the 

probabilities of the orderings, resulting in jumps of the cdf of the 

Table 1. Type I Error Rates of a Nominal 5% BM Test for Different Sample 
Sizes and Distributions (estimated from 10,000 replications) 

Distributions 

Sample sizes Unimodal-bimodal Bimodal-bimodal 

15-15 .0432 .0675 
15-16 .0433 .0558 
16-15 .0737 .0539 
16-16 .0670 .0509 
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test statistic. If the test statistic is compared to a continuous ref 

erence distribution as null distribution, jumps also appear in the 
cdf of the p value. Jumps occur where there are blocks of values 

from one distribution without values from the other distribution 
between them. This is likely to happen if in a particular interval 
the density of one distribution is high relative to the other one, 
which occurs easily with multimodal distributions. BRW can 

avoid such jumps due to resampling, because the test statistic is 

compared from sample to sample to another reference distribu 

tion, but some waving of the p value cdf can be observed here 
too. 

For discrete variables with just a few distinct values BRW 

may fail, since it may be impossible to adjust the samples to 
be stochastically equal, and resampling from stochastically un 

equal distributions results in a biased null distribution. The fol 

lowing pair of samples serves as an example of this: Sample A: 

1, 2, 2, 3, 3,3; Sample B: 2, 2, 2, 3,3,4. Here U = 
?A.;<B 1 + 

?A.=jB. V2 
= 

21/36 
= -583- If adjusting Sample B down 

wards by a small shift, say, B'\ 1.9999, 1.9999, 1.9999, 2.9999, 
2.9999, 3.9999, U makes a big step downwards far beyond .5: 
U = 

Y.Ai<B3l 
+ 

Y.At=B3 1/2 
= 

15/36 
= .417. Here it is the 

discreteness of the sample, that is, the many ties, rather than the 

shift adjustment that is responsible for this; any strictly mono 
tone transformation would produce the same result. (Although 

transforming the distribution, that is, the frequencies of the val 

ues, rather than transforming the values themselves might help.) 
Other procedures, such as variants of the Student-1 test, the 

median test, and so on, are often considered as potential alter 

natives of the WMW test. However, we must emphasize that 

these procedures test quite different hypotheses, for example, 
the equality of means or medians, which is not at all equiva 

lent to i/o : P(X <Y) 
= 

P(X > Y) (Hart 2001; R?zsa et 
al. 2001). One should test that particular hypothesis, which fits 
to the specific biological question of interest, and should not 

change it for purely statistical reasons (Thompson and Barber 

2000; Zhou et al. 2001). Though we admit that making such fine 
distinctions is still not typical in everyday practice, there is an 

other, rather pragmatic argument against substituting the WMW 

by variants of the t test or the median test. The WMW test, if 

applicable, has considerably higher power than these alternative 
tests. Note that the proposed bootstrap test both preserves this 

advantage and has wider applicability. 

6. CONCLUSION 

Using WMW or RW to test for stochastic equality results in 
considerable alpha inflation and therefore should be avoided. 

Alpha inflation can be demonstrated even for typical, everyday 
data in parasitology and psychology. Simulation results based 
on empirical distributions suggest that BRW maintains the alpha 
level well. As the loss of power compared to WMW is small 
when both tests are applicable, the strategy of always using BRW 
is also reasonable. For moderate and large samples (>30) also 

BM performs well. 

[Received April 2003. Revised November 2004.] 
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