Rózsa Lajos

A gazda-parazita kapcsolat
egyes evolúciós, ökológiai és viselkedési vonatkozásai

akadémiai doktori értekezés

Budapest
Tartalomjegyzék

1. Bevezetés ... 4
2. A tetvek (Insecta: Phthiraptera) evolúciós-ökológiai sajátságai.. 6
 2.1. A tetvek rendje: evolúciós és ökológiai áttekintés .. 6
 2.1.1. Bevezetés.. 6
 2.1.2. A tetvek eredete .. 7
 2.1.3. Fajgazdagság, elterjedés és gazdaspecifitás .. 9
 2.1.4. Testtáj-specifitás... 12
 2.1.5. Egyedfejlődés és genetikai háttér ... 13
 2.1.6. Életmód... 14
 2.1.7. A külső környezeti tényezők hatása a tetvességre .. 15
 2.1.8. Tetvesség hatása a gazdaállatokra ... 16
 2.1.9. Madarak tetvek elleni védelme és a tetvek kitérési válaszreakciói 17
 2.1.10. Tetvek és az emberi faj korai története ... 19
 2.2. A testtáj-szegregáció kialakulásának egy lehetséges evolúciós mechanizmusa 21
 2.3. A gazda csoportos életmódjának hatása a tetvességre: esettanulmány két varjúfajon 24
 2.3.1. Bevezetés.. 24
 2.3.2. Anyag és módszer... 25
 2.3.3. Eredmények.. 26
 2.3.4. Megbeszélés ... 29
 2.4. A madarak tetveinek gyakorisági eloszlása .. 31
 2.4.1. Bevezetés.. 31
 2.4.2. Anyag és módszer... 32
 2.4.3. Eredmények.. 33
 2.4.4. Megbeszélés ... 34
 2.4.5. Kitekintés: egy hasonló gazda-parazita rendszer ... 35
 2.5. A madarak tetveinek abundanciája .. 36
 2.5.1. Bevezetés.. 36
 2.5.2. Anyag és módszer... 37
 2.5.3. Eredmények és megbeszélés .. 38
 2.6. A madarak tetveinek taxonómiai diverzitása... 42
 2.6.1. Bevezetés.. 42
 2.6.2. Anyag és módszer... 44
 2.6.3. Eredmények ... 46
 2.6.4. Megbeszélés ... 50
 2.7. Hajtetű (Pediculus humanus capitis) ivararányok elemzése .. 53
 2.8. Ivari szelekció tasakospatkány-szőrtetvekben.. 54
 2.8.1. Bevezetés.. 54
 2.8.2. Morfológiai elemzés... 55
 2.8.3. Eredmények ... 59
 2.8.3. Biogéográfiai vonatkozások ... 60
 2.8.4. Értékelés ... 64
 2.9. Irodalom ... 65
3. Metodikai fejlesztések .. 84
 3.1. Parazitás fertőzések kvantitatív elemzése.. 84
 3.1.1. Bevezetés.. 84
 3.1.2. Az egyes mérőszámok tulajdonságai és interpretációja ... 86
 3.1.3. Az adatközles javasolható módja .. 88
 3.1.4. A statisztikai hipotézisek tesztelése.. 89
 3.1.5. Melyik minta a fertőzőtebb?.. 90
 3.1.6. A „parazitás nyomás” összehasonlítása minták között... 90
 3.2. A parazita zsúfoltság ... 92
 3.2.1. Bevezetés.. 92
 3.2.2. A zsúfoltság kvantifikálása... 95
 3.2.3. Tárgyalás .. 97
 3.3. Sztochasztikus egyenlőség .. 99
 3.4. Quantitative Parasitology ... 99
 3.5. Irodalom .. 101

4. Kitekintő kérdések.. 104
 4.1. Fertőzések rosszindulatú terjesztése .. 104
 4.1.1. Bevezetés.. 104
 4.1.2. Modellépítés és szimuláció... 105
 4.1.3. Szimulációs eredmények .. 109
 4.1.4. Altruizmus és rosszindulat ... 112
 4.1.5. A manipulációs hipotézis korlátai ... 114
 4.1.6. Az állatok továbbfertőzési viselkedése... 115
 4.1.7. Az emberek továbbfertőzési viselkedése.. 118
 4.1.8. Diszkusszió... 122
 4.2. Irodalom .. 123

5. Összefoglalás .. 126

6. Köszönnetnyilvánítás ... 128

7. Táblázatok .. 129
1. Bevezetés

Mikor egy magamfajta zoológus elérkezik oktatói-kutatói pályájának egy olyan nevezetetes pontjához, mint az akadémiai doktori dolgozat benyújtása, akkor szükségképpen elgondolkozik azon, hogy voltaképpen mi a feladata egy zoológusnak a mai Magyarországon és a Világban. Én három olyan feladatot találtam, amely kihívásként hatott rám és munkára ösztönzött.

- nyilván feladatom legalább egy vagy néhány állatcsoport alapos ismerete, e csoportok jellemzésében új tulajdonságok és evolúciós-ökológiai összefüggések felismerése, vagy a korábban anekdotikus szinten már felismert tulajdonságok és összefüggések egzakt leírása,
- feladatom továbbá fejleszteni a tudományterületem metodikáit (elsősorban a más tudományterületeken megjelenő új módszerek adaptálásával), hogy fiatalabb munkatársaim már jobb eszköztárral láthassanak majd munkához,
- és végül feladatom lehet egyfajta kitekintés, tehát a szakterületem szükebb határai között felismert összefüggések kapcsán olyan általánosabb érvényű mondandó megfogalmazása, amely talán már tágabb körben is érdeklődésre tarthat számot.

A dolgozat fejezeteit e hármas célkitűzés mentén rendeztem sorba. Az 1. pont kapcsán ismertetem a tetvek (Insecta: Phthiraptera) evolúciós és ökológiai sajátságainak elemzése terén végzett munkáinkat. Ezek főként a tetvek habitat szegregációját, a gazdaegyedek közti eloszlását, mennyiségét, taxonómiai változatos-ságát, ivararányát és ivari testméret-dimorfizmusát befolyásoló evolúciós és környezeti tényezők felderítésére irányultak. A ragályosan – testi érintkezéssel – terjedő kórokozók közül talán éppen a tetvek a legalkalmasabbak a kvantitatív elemzésekre, hiszen szabad szemmel is láthatók, természetes élőhelyükön megfigyelhetők, és viszonylag könnyen megszámlálhatók. A természetbúvár és faunista elődök talán több egyedszám adatot halmoztak fel a tetvek, mint a legtöbb más ragályos parazita esetében. Ezért a metodikai fejlesztések (2. pont) kapcsán munkám főként a statisztikai eszközök fejlesztésében való közreműködésre irányultak. Ezután a tágabb érvényességi körben is általánosítható eredményeket ígérő elemzéseket (3. pont) ismertetem. Érdeklődési körömből adódóan ez is a
ragályos kórokozók és gazdafajaik viszonyával kapcsolatos kérdések; a fertőzések „rosszindulatú” terjesztésének – mint a fajon belüli agresszió egy mechanizmusának – evolúciós és ökológiai háttérét elemzem.

A „parazita” („élősködő”) kifejezést nem állatorvosi vagy orvosi, hanem ökológiai értelemben használok. Jelenhet az állatokban vagy emberekben élősködő bármilyen lényt, legyen az vírus, baktérium, egyszerű eukarióta (Protista), gomba vagy állat. Az élősködés fogalmának illetve a kapcsolódó további alapfogalmak definíciói könyvemben megtalálhatók1. „MTA Biológiai Tudományok Osztályának minimum feltételei az MTA Doktora cím megszerzéséhez” című követelményrendszer ezt mondja: „a publikációs szám és az összesített impakt faktor kizárólag a kandidátusi (...) fokozat megszerzése óta megjelent, a doktori értekezésben felhasznált közlemények figyelembe vételével történik (kiemelés tőlem). Ezt úgy értelmeztem, hogy értekezésemnek a korábbi publikációim összefoglalását kell tartalmaznia.

Rózsa Lajos

2. A tetvek (Insecta: Phthiraptera) evolúciós-ökológiai sajátságai

2.1. A tetvek rendje: evolúciós és ökológiai áttekintés

2.1.1. Bevezetés

A tetvek a legnagyobb testű ragalymos (testi érintkezéssel terjedő) paraziták, ezért könnyen megszámlolhatók, morfológiájuk és viselkedésük pedig a hagyományos természettúvár eszközökkel is jól vizsgálható. Kutatásuk ezért lehetőséget nyújt a gazda-parazita kapcsolat számos olyan elemének vizsgálatára, amelyek a vírusok, baktériumok, protiszták, gombák, vagy férgek esetében metodikai nehézségek miatt nem kutathatók.

A tetvek a rovarok legnagyobb olyan rendje, mely kizárólag állati élősködő fajokból áll. Másodlagosan számarylatlan ektoparaziták, melyek kizárólag madarak tollazatában és emlősök szőrzetében élnek. Legfontosabb morfológiai jellemzőik:

- testhossz főként 1-4 mm közti (szélsőségekkel: 0,9-11 mm),
- a szájszervek rágó vagy szúró-szívó típusúak,
- a tarsus 1 (Anoplura) vagy 2 ízből áll,
- a fejük (és gyakran a test is) háthasi irányban lapított,
- a petén (serkén) egy fedőlap (operkulum) zárja a kibúvónyílást,
- az állkapcsi tapogató redukált,
- az összetett szemek leegyszerűsödtek, pontszemeik nincsenek,
- a csáp 3 vagy 5 ízű, és
 - vagy a fej mélyedésébe visszahúzható (Amblycera),
 - vagy fonalas, a hímekben rögztőszervvé módosulhat (Ischnocera),
 - vagy feltűnően rövid (Anoplura).

2.1.2. A tetvek eredete

Többen megkérdőjelezték a tetvek monofiletikus voltát is, azt sugallva, hogy esetleg több, közelrokon fatetű csoport is áttérhetett az obligát parazita életmódra, de ezt az elképzelést kevés adat támogatja. Legújabban Johnson et al. (2004) molekuláris genetikai bizonyítékokkal támasztotta alá mindezt. Eredményeik szerint az Amblycera tetvek a Liposcelididae fatetvek ikerkládja, míg az (Anoplura + Rhyncophthirina + Ischnocera) tető-klád az (Pachytroctidae + Liposcelidae + Amblycera) klád ikerkládja. Ha ez az eredmény megbízható, akkor a tetvek rendje parafiletikus eredetű, és így taxonómiai értelmét veszítheti.

Mai elterjedésüket tekintve a tetvek elsősorban madárélősködők, az ismert fajok 78 %-a, és az ismert génuszok 69 %-a madarakon él. Nem csoda, hogy a rend eredetével kapcsolatban a legelterjedtebb nézet az, hogy a tetvek madarakon alakultak ki, majd másodlagosan néhány kisebb csoportjuk emlősökön is megjelent. Az emlősökön élő taxonok ráadásul – egy kivételtől (Anoplura) eltekintve – viszonylag szűk földrajzi elterjedéssel jellemezhetők. Amióta ismertté váltak a madarak kialakulását időben megelőző tollas dinoszauruszok is, megjelent a kézenfekvő lehetőség, hogy a tetvek esetleg azokon a tollas Theropoda dinoszauruszokon alakultak ki, melyek később a madarak őseivé váltak.

Csakhogy az emlősök másodlagos szerepe a jelenkorban megtévesztő. A ma élő állandó testhőmérsékletű gerincesek 68 %-a madár, ha tehát az eddig ismert tetőfajok 78 %-a madárélősködő, akkor az nem tükröz nagymértékű aránytalanságot. A különbséget a kutatásukra fordított erőfeszítés különbsége is okozhatja, hiszen az emlőstetvek nagy húnyada rágcsálókon él, és ezeket valószínűleg kevésbé kutatták, mint a madarakat. Az emlősök sokkal régebbi csoport, mint a tollas dinoszauruszok
és a madarak, ezért hosszú földtörténeti időszakon keresztül ők voltak a potenciális tetvek számára egyedül alkalmas gazdaállatok. Az a tény, hogy egyes emlőstetű taxonok mai elterjedése Dél-Amerikára, Ausztráliára és Madagaszkártra korlátozott, nem feltétlenül jelenti azt, hogy ezek viszonylag későn kialakult fejlődési ágak, amelyek a Jura-Kréta átmenet után a földrajzi akadályok miatt már nem tudtak szétterjedni más kontinenseken. Mindezt úgy is értelmezhető, hogy az egykor világszerte elterjedt tetűcsoportok csak az emlősök néhány ősi jellegű, mára már erősen korlátozott elterjedésű csoportján maradtak fent.

Az esetleges kövületek segíthetnek a rend eredetének feltárását, de a tetvek jellegüknel fogva rendszerint nem fosszilizálódnak. Kumar & Kumar (1999; 2001) leírt két izeltlábút a triászból, melyeket ők emlős- és madártetű fajokként azonosítottak. A fajok közti összehasonlításban a tetvek testmérete rendszerint pozitív összefüggést mutat a gazdafajok testméretével (Harrison 1915), ezért súlyos probléma, hogy a leírt fosszíliák sokkal kisebbek (testhossza 0,23, ill. 0,60 mm), mint például a mai kolibri-tetvek. Testük körvonalai ráadásul páncélos atkák (Oribatida) körvonalaira emlékeztetnek, összességében úgy tűnik tehát, hogy e fosszíliák nem tetveket képviselnek. Még meghökkentőbb a Rasnitsyn & Zherikhin (1999) által leírt, 18,5 mm hosszú rovar a Kréta korból, amely körvonalaitja is emlékeztet a mai tetvekre. A rovar különösen nagy mérete a mai élő tetvek szokásos méretarányait követi, ahogy a leírt fosszíliai kisebbek lehetnek, mint például a mai kolibritetvek. Testük körvonalai ráadásul páncélos atkák (Oribatida) körvonalaira emlékeztetnek, összességében úgy tűnik tehát, hogy e fosszíliák nem tetveket képviselnek. Még meghökkentőbb a Rasnitsyn & Zherikhin (1999) által leírt, 18,5 mm hosszú rovar a Kréta korból, amely körvonalaitja is emlékeztet a mai tetvekre. A rovar különösen nagy mérete a mai élő tetvek szokásos méretarányait követi, ahogy a leírt fosszíliai kisebbek lehetnek, mint például a mai kolibritetvek. Testük körvonalai ráadásul páncélos atkák (Oribatida) körvonalaira emlékeztetnek, összességében úgy tűnik tehát, hogy e fosszíliák nem tetveket képviselnek. Még meghökkentőbb a Rasnitsyn & Zherikhin (1999) által leírt, 18,5 mm hosszú rovar a Kréta korból, amely körvonalaitja is emlékeztet a mai tetvekre. A rovar különösen nagy mérete a mai élő tetvek szokásos méretarányait követi, ahogy a leírt fosszíliai kisebbek lehetnek, mint például a mai kolibritetvek. Testük körvonalai ráadásul páncélos atkák (Oribatida) körvonalaira emlékeztetnek, összességében úgy tűnik tehát, hogy e fosszíliák nem tetveket képviselnek. Még meghökkentőbb a Rasnitsyn & Zherikhin (1999) által leírt, 18,5 mm hosszú rovar a Kréta korból, amely körvonalaitja is emlékeztet a mai tetvekre. A rovar különösen nagy mérete a mai élő tetvek szokásos méretarányait követi, ahogy a leírt fosszíliai kisebbek lehetnek, mint például a mai kolibritetvek. Testük körvonalai ráadásul páncélos atkák (Oribatida) körvonalaira emlékeztetnek, összességében úgy tűnik tehát, hogy e fosszíliák nem tetveket képviselnek. Még meghökkentőbb a Rasnitsyn & Zherikhin (1999) által leírt, 18,5 mm hosszú rovar a Kréta korból, amely körvonalaitja is emlékeztet a mai tetvekre. A rovar különösen nagy mérete a mai élő tetvek szokásos méretarányait követi, ahogy a leírt fosszíliai kisebbek lehetnek, mint például a mai kolibritetvek. Testük körvonalai ráadásul páncélos atkák (Oribatida) körvonalaira emlékeztetnek, összességében úgy tűnik tehát, hogy e fosszíliák nem tetveket képviselnek.
2.1.3. Fajgazdagság, elterjedés és gazdaspecifikitás

A paraziták nemcsak maguk képezik a földi biodiverzitás jelentős hányadát, de egyúttal gazdafajaikat is növekvő változatosságra szelektálják. Ha tehát a biodiverzitás megőrzendő természeti érték, akkor ezen belül az élősködők diverzitása is annak tekinthető (Rózsa 1992). A tetvek köréből a mai napi alig néhány kihalt fajt ismerünk, és ezek is a gazdafaj kihalása miatt haltak ki (lásd pl. Mey 1990). Az egyetlen hazai próbálokozás, amely természettévedelmi szempontból jelentős parazitafajok felkutatását célozta, Merkl et al. (2004) munkája. A szerzőtársaimmal a kerecsen (Falco cherrug) fészkek rovarfaunájának feltárására vállalkoztunk, de természettévedelmi szempontból különösen jelentős fajt nem tudtunk kimutatni.

A tetvek minden kontinensen elterjedtek, egyes fajaik még a nyílt oceánokon is elűfordulnak. A szívőtetvek egy csoportja, az Echinophthiridae család, főkákon és rozmárokon (Pinnipedia) él, míg a víz alá merülő madarak a Menoponidae és/vagy Philopteridae családok fajaival fertőzötték.

A rendnek 4 jól elkölönült csoportja ismert, ezeket alrendeknek tekintjük. A szívőtetvek (Anoplura) az elefantettetvekkel (Rhyncophthirina) alkotnak monofilektikus csoportot, ezek ikerkládja a fonalascsápmú tetvek (Ischnocera), míg a bunkóscsápmú tetvek (Amblycera) ez utóbbi közös kládának az ikerkládja. A korábbi taxonómiai felfogás szerinti „rágótetvek rendje” (= „szőr- és tolltetvek, Mallophaga”), mely az Amblycera és Ischnocera alrendeket fogalalta össze, parafilektikus csoport, és így értelmét veszítette. A madarakon elterjedt négy családból három a bunkóscsápmúak közé tartozik. A Menoponidae család fajai változatos alakú és életmódú tetvek, a

Valószínűleg minden madárfajon él egy vagy több tetűfaj, ugyanakkor az emlősök sok, viszonylag nagy csoportja (pl. denevérek, cetek stb.) mentes a tetvektől. A klasszikus parazitológia tankönyvek a tetveket szélsőségesen gazdaspecifikus parazitaként jellemzik. A rend α-taxonómiai feldolgozásában mindmáig alapvető probléma, hogy

1. ábra. A tetvek fontosabb taxonjai, gazdaállataik (madarak és emlősök külön feltüntetve), az ismert génnoszok és fajok száma, végül a négy alrend helyzete. A baloldali kladogram csak az elágazások sorrendjét jelzi, az ághosszakat nem illusztráltuk. A jobboldali kérdőjel a valószínű polifiletikus eredetre utal.

egyéb triopsidae erszényesek, Ausztrália, Új-Guinea 7, 54
Rhemedectes avianus sirakos kozúr, Új-Guinea 1, 1
Menothoden madaarak, kozmopolita 67, 1043
Laemobothriidae madaarak, kozmopolita 1, 20
Ricinidae madaarak, kozmopolita 3, 109
Cyropidae rágcsálók, Dél-Amerika 9, 96
Trimeronopidae erszényesek és rágcsálók, Dél-Am. 6, 18
egyéb Philopteridae madaarak, kozmopolita 137, 2730
Perthophylophilus babakotrophilus lemurok, Madagaszkár 1, 1
Trichoqotrichia emlősök, Ausztráliai kivül 19, 382
Haematomyzidae őszerget és dánok, Afrika, Ázsia 1, 3
Anoplura emlősök, Ausztráliai kivül 49, 532
sok szerző eleve feltételezte a szigorú gazdaspecifitást, ezért ha egy génszózat egy addig ismeretlen gazdafajról gyűjtöttek, akkor szinte automatikusan új fajnak tekintették. Ez természetesen alapvető hiba, hiszen ha a tetőfajokat a gazdafajok alapján véljük definiálni, akkor azután már nem vizsgálhatjuk a természetben létező tetőfajok gazdaspecifitását. A tetvek egyes fajai valóban csak egyetlen gazdafajról ismertek, más fajok viszont számos különböző, egymástól morfológiai- és taxonómiai-állomány alapján is távol álló gazdafajon is előfordulnak. Így például a *Menacanthus eurysternus* faj eddig a verébalakúak (Passeriformes) és harkályalakúak (Piciformes) 175 fajáról ismert. Hasonlóképp, két közelsorokon faj, az *Anatoecus icterodes* és az *A. dentatus* egyéb taxonokban párhuzamosan fertőzők sok tucat réce-, hattyú- és lúdfajt (Anseriformes). Igaz, ezek valójában „morfológiai fajok” melyek akár számos biológiai fajt is tartalmazhatnak.

A gazdaspecifitás elemzésében egy idejétmúlt és félrevezető eszme a természetben létező fertőzők egy részét a pusztaszok kétapján „normális” gazda-parazita kapcsolatnak, egy más részét pedig „nem-normális” („straggler” vagy „desertoer”) kapcsolatnak minősíteni (Rózsa 1993a). Helyes kérdés viszont azt elemezni, hogy az adott tetőfaj képes-e önfenntartó népességet létrehozni a kérdéssel gazdafajon.

tetvek a pihetollazatban élnek, és nagyon különböző testméretű gazdaegyeden is könnyen megtelepednek. A gazdaspecifitást tehát főként a fajok közti átterjedésre való képesség hiánya korlátozza a *Physconelloides* tetvek esetében, míg az átterjedés után az önfenntartó populáció létrehozására való képesség hiánya korlátozza a *Columbicola* tetvek esetében.

2.1.4. Testtáj-specifitás

A tetvek nem egyenletesen oszlanak el a madár testének felületén, hanem egyes anatómiai régiókban sűrűsödnek, máshol ritkák vagy hiányoznak, ezt nevezik testtáj-specifitásnak. Előfordulásuk részben azért testtáj-specifikus, mert eltávolításuk a testről testtájánként eltérő mértékű (Rózsa 1993b), és részben azért, mert a tetvek maguk is szelektíven keresnek a madár tollazatának egyes helyeket (pl. mert az védettetebb, vagy több táplálékot biztosít).

A madarak tetvei szinte mindig a tollazatban (de soha nem a tollazat külső felszínén), vagy a tollazattal borított bőrön élnek. A csupasz, tollatlan bőrön nem fordulnak elő, mert onnan a madár könnyen eltávolíthatatlan őket (kivéve talán a pelikánok torokzacsokjában élő *Piagetiella* fajokat). Néhány génnusz, mint például a *Colpocephalum* fajok, a még fejlődő, „tokos” evezőtoll lágy csévéjébe üreget rágnak, majd az így kialakult, csökkent méretű evezőtoll csévéjének üregében rejtőznek, és a csév nyílásán át járnak ki a tollazatba táplálkozni.

Az egyazon madárfajon együtt élő különböző tetűfajok rendszerint felszíni, vagy a tollazattal borított bőrön élnek. A csupasz, tollatlan bőrön nem fordulnak elő, mert onnan a madár könnyen eltávolíthatatlan őket (kivéve talán a pelikánok torokzacsokjában élő *Piagetiella* fajokat). Néhány génnusz, mint például a *Colpocephalum* fajok, a még fejlődő, „tokos” evezőtoll lágy csévéjébe üreget rágnak, majd az így kialakult, csökkent méretű evezőtoll csévéjének üregében rejtőznek, és a csév nyílásán át járnak ki a tollazatba táplálkozni.

A lárvák gyakran kissé más testtájspecifitást mutatnak, mint az imágók, és különösen a peték elhelyezkedése szintén különbözik. A testtájspecifitás szoros kapcsolatban áll a tetű alakjával. Így például a szárny és a farok nagy tollain élő tetvek rendszerint keskeny, hosszúak alakúak, és képesek e nagy tollak zászlóin az ágak közti felületi árkokban meglapulni. A nyakon és fejen élő tetvek viszont széles, ovális potrohuk és háromszögletű fejük miatt körte alakúak, őket a tollászkodó madár csőréről nem érheti el. A tetvek egy másik csoportja a testet borító pihetollazatban bujkál, ők igen kicsiny, ovális testű fajok. A Philopteridae családban a különböző testtájspecifitással jellemezhető és különböző alakú tetvek egymással párhuzamosan több alkalommal is megjelentek (Smith 2001).

Az egyazon madárfajon együtt élő különböző tetűfajok rendszerint eltérő testtájakra specializálódnak, tehát testtáj-szegregációt mutatnak (2.2. fejezet).
2.1.5. Egyedfejlődés és genetikai háttér
Egyedfejlődésük kifejlődés (epimorfózis), petéjüket serkének nevezzük, három lárvasztádióra van. Általában ivarosan szaporodnak, de az emlősökön néhány parthenogenetikus tetűfaj is ismert. A serkéket cementálóanyaggal rögzítik szőrszállakra vagy tollcsévükre, ezek a kikeléssig mintegy 4-10 napig fejlődnek. Az egyes lárvasztádiók időtartama egyre növekvő, általában 3-12 napig tart. Az imágó stádium tartamát 1 hónapnyira becsülik, ezekben a nőstények napi 1 petét raknak. Szaporodási rátájuk más rovarokhoz viszonyítva alacsonynnak tűnik. Az életciklus minden szakasz a gazdaegyeden zajlik, és gyakran több, egymást követő generáció tagjai is egyazon madáron élnek.

A tetvek kromoszómái kicsinyek, és a kromoszómaszám alacsony (n=2-12). Az első genetikai vizsgálatok azonban nem a nukleáris, hanem a mitokondriális genetika szerepel a vizsgálatán alapultak, ami azért probléma, mert a tetvek mitokondriális genomja kivételesen variálható (Johnson et al. 2003), és így az eredmények ellentmondásokat is tartalmaznak. A mitokondriális genom egyes szakaszai összehasonlíthatók a madarak mitokondriális genomjának homológ szakaszaival. A citokróm b gén egy szakaszát elemezve Page et al. (1998) kimutatták, hogy e szakasz a tetvek molekuláris evolúciója mintegy 2-3-szor gyorsabb, mint a madaraké. Ennek oka nemcsak a tetvek gyorsabb generációváltása, hanem talán az is, hogy náluk minden továbbfertőzési esemény együttjár a populáció méret beszűkülsével („bottleneck effect”).

Az újabb törzsfa-rekonstrukciók során már több lókuszt elemeznek, lehetőleg nukleáris és mitokondriális genomból egyaránt. Így ma már hozzávetőleges képünk van a rend főbb csoportjainak rokon sága viszonyairól (lásd pl. riboszómális RNS alapján: Barker et al. 2002; mitokondriális és nukleáris DNS alapján: Johnson & Whiting 2002).

Amint egyre jobban megismerjük a tetvek és gazdáik molekuláris törzsfáit, mind több csoportban elemezhetjük a két törzsfa összerendezett avagy független voltát. Gólyaalakúak (Ciconiiformes) és Philopteridae tetveik (Paterson et al. 2000), valamint sarlósfejcskék (Apodiformes) és Menoponidae tetveik (Page et al. 1998) törzsfái között szignifikáns hasonlóságot sikerült kimutatni, de nincs ilyen hasonlóság a Brueelia (Philopteridae) tetvek és énekesmadár (Passeriformes) gazdái között (Johnson et al. 2002b).
2.1.6. Életmód

Minden élősködő jól körülhatárolt, szigetszerű élőhelyen, a gazdaegyeden(-ben) él. E habitat-sziget természete alapvetően különbözik a valóságos földrajzi szigetek jellegétől, hiszen létük időben erősen korlátozott, és ezért a paraziták legfeljebb néhány generációnyi időtartamot tölthetnek egyazon gazdán. A továbbfertőzés a tetvek életmenetének rövid, de kockázatos pillanata, mely valószínűleg jelentős szelekcióis nyomást gyakorol minden fajra. A tetvekhez legközelebb álló Liposcelis fatetvek nemcsak morfológiai téren tünek az ektoparazita életmódra „preadaptáltnak”, hanem abból a szempontból is, hogy „továbbfertőzésre” alkalmashoz adaptációkat kellett kifejleszteniük, mert jellemző élőhelyeik – korhadó fatuskók, gerincesek fészkei stb. – térben jól elkülönült és rövid élettartamú habitat-szigetek.

A tetvek rendszerint a madarak közti közvetlen testi érintkezés kapcsán, és különösen a szülő-útód kapcsolatban (Clayton & Tompkins 1994) terjednek. A szülőfióka kapcsolatban számos alkalom adódik a tetvek továbbjutásra, de a tetvek egy része mégis a szülőmadáron marad. Általában nem tudjuk, hogy mekkora az a hanyad, amely továbbfertőz, illetve amely helyben marad, mely fejlődési stádiumok és melyik ivar milyen esélyt dönt a továbbfertőzés illetve a helyben maradás mellett, és hogy e döntések meghozatalán milyen könyezeti tényezőket vesznek figyelembe.

Hillgarth (1996) fácánkakasok csúdjét ragasztóval kente be, és így kimutatta, hogy a tetve a párzás pillanatában a kakas lábán szaladnak át egyik madárról a másikra. A kakukk (Cuculus canorus) és más obligát költésparazita fajok specifikus tetvei kizárólag a kifejlett kakukkok közti érintkezéseket, elsősorban nyilván a párzás során terjednek (Brooke & Nakamura 1998).

Vannak másodlagos fertőzési módok, melyek a beteg vagy frissen elpusztult madárról történő menekülés esetén nyújtanak némi esélyt az életben maradásra. Így például a bunkócsápcápások mellett a bunkócsapúak elhagyják az elpusztult gazdaállatot, és szabadon kőszálva keresnek újabb gazdát. Ennek a terjedési módnak a hatékonyságát eddig nem vizsgálták. A fonalacsapú tetvek olykor kullancslegyeken (Hippoboscidae) rögzíthetik magukat rágoiikkal, hogy foretikus módon jussanak át új gazdaáakra (Keirans 1975).

Az emlősök szívőtetvei vért szívnak. A madarak tetveinek túlnyomó többségét adó fonalacsapú fajok pihetollakat rágnak. Más tollak, főként fedőtollak, de még az evező- és farktollak tövénel is képződnek finom, piheszerű tollága, amelyek nem kapcsolódnak össze zászlóvá, természetesen ezt is lerágják. Az erősebben fertőzött

Egyes tetvek többé-kevésbé ragadozók lehetnek, de ennek mértékét nem ismerjük. Néhány esetben atkák és rovarok kitintőredékeit ismerték fel a gyomorban (Oniki & Butler 1989). Anekdotikus információk alapján valószínűsíthető, hogy a serkékre és tetűlárváira jelentős predációs nyomást gyakorolnak akár a más fajba, akár az azonos fajba tartozó kifejlett tetvek is (Durden 1987). Elképzelhető, hogy a serkék szigorúbb testtáj-specifikitása és a gyakran igen különös nyúlványokkal mintázott operkulumai részben a predáció elhárítását szolgálják.

A madarak bőre és tollazata igen meleg és száraz élőhely, ezért a fajok többsége – mely vért nem fogyaszt – számára korlátozó tényező lehet a vízhiány. Pscoptera őseihez hasonlóan sok fonalascsapú tetűnél és egyes bunkócsapú fajoknál is a nyelven függőleges kitinnyúlványok (szkleritek) helyezkednek el a labrum és a labium között, melyek lehetővé teszik a levegő pára tartalmának hatékony felvételét (Rudolph 1982).

A fonalascsapúak többsége, és a bunkócsapúak néhány faja Rickettsia-szerű baktérium-fertőzéseket hordoz. Az emlősök tetvei közt a baktériumok hiányoznak a Trichodectidae családból, de jelen vannak a Rhyncophthirina és az Anoplura alrendekben. A petesejten át, transzováriális fertőzéssel jutnak a következő generáció tagjaiba, és bakteriocitánk (vagy micetocitának) nevezett, e célra specializált sejtekben élnek. Minden jel szerint szimbionták, a tollevő fajoknál szerepük van a nehezen bontható keratin emésztésében, a vérszívó fajoknál talán vitaminokat szintetizálnak (Reed & Hafner 2002).

2.1.7. A külső környezeti tényezők hatása a tetvességre
A közelmúltig elterjedt nézet volt, hogy a madarak tollazatán belül a hőmérséklet és a páratartalom annyira állandó, hogy a külső (tehát a madáron kívüli) környezeti tényezők hatása elhanyagolható. Moyer et al. (2002) azonban kimutatták, hogy a tollazaton kívüli és belüli páratartalom szorosan összefügg, és a gerlék és galambok
fonalascsápú tetveinek prevalenciája\(^3\) és intenzitása\(^4\) terepen és laborkísérletekben egyaránt erősen függ a légkör páratartalmától. Nem tudjuk, hogy eredményeik mennyire általánosíthatók. A tetűökologikai kutatások egyik nagy problémája, hogy a legtöbb kísérletes vizsgálat fonalascsápúakon történik, miközben a bunkóscsápúak életmódja azoktól sok vonásban eltérő. Mégis elképzelhető, hogy a jelenség általános, hiszen a nagyon száraz habitatban élő fajok, mint például a tűzokfélék (Otididae) és a pusztaitýukfélék (Pteroclidae) családjainak képviselői, aránytalanul kevés tetűfajt hordoznak a velük összehasonlítható családokhoz képest. Másrészt viszont a fauna listák alapján úgy tűnik, hogy a víz alá merülő madarakon (bár több jelentős csoport kivételével) fajokban kevés tetűfaj él. Így például a pingvinfélék (Spheniscidae), vagy a hazai faunából a vőcsőkfélelék (Podicipedidae), a kormoránfélék (Phalacrocoracidae), a halászsas (Pandion haliaetus), a jégmadár (Alcedo atthis), vagy a vízirigó (Cinclus cinclus) rende kevesebb tetűfaj gazdája, mint a velük összehasonlítható rokon taxonok. A tetvek csökkent fajgazdagsága a száraz élőhelyekben élő és víz alá merülő madarakon azonban ma még csak anekdotikus ismeret, egzakt vizsgálatok nem történtek.

2.1.8. Tetvesség hatása a gazdaállatokra

Erős fertőzés esetén a Philopteridae család fajai számottevő mértékben fogyasztják el a tollazat piherétegét, anélkül, hogy a madár testén (a kontúrtollak külső felületén) ebből bármi is látszana. Vadon élő házigalambok (Columba livia) ennek hatására jelentősen (8,5%) növelik anyagcseréjüket, mert pótolni kényszerülnek a römlő hőszigetelés miatt hőveszteséget (Booth et al. 1993).

A mechanikai károk másik formája inkább a Menoponidae család fajait jellemzi, melyek megrágják a fejlődő tollak csévéjét, és így többé-kevésbé károsodott evező- és farktollak megjelenését okozzák. A Machaerilaemus malleus a füstifecske (Hirundo rustica) fejlődő farktollának zászlójára rág számottevő lyukakat (Kose & Møller 1999; Pap 2005), a Colpocephalum és a hasonló életmódú génuszok fertőzései pedig teljes evező- és farktollak elvesztéséhez vezetnek.

A bunkóscsápúak több-kevesebb vért fogyasztanak, akár a fejlődő tollcsévég megrágása által, akár – a Ricinidae családban – szúró-szívó szájszervükkel. Az

\(^3\) A prevalencia (%) a fertőzött egyedek aránya a populációban ill. az azt reprezentáló mintában.

\(^4\) Az intenzitás a paraziták egyedszáma fertőzött gazdán. Értéke 1 vagy annál nagyobb szám.

A párválasztási preferenciák, vagy például a csoportos állatok hajlama a fertőzött fajtársak kiközösítésére olyan magatartási adaptációk, melyek részben a ragályos fertőzések elkerülését szolgálják. Ha a madár a párválasztás során nem-fertőzött fajtársát választ, akkor növeli esélyét annak, hogy (1) utódai jó rezisztencia-allélokat örökölnek, hogy (2) ő maga nem fertőződik a párizs és általában a párkapcsolat során, és végül, hogy (3) párja jó ivadékgondozó partnernek bizonyul majd (Hamilton & Zuk 1982; Molzer 1990; Clayton 1991a). Kevéset tudunk arról, hogy a tetvek szerepet játszanak-e a madarak párválasztásában, és ha igen, akkor a madarak milyen bélyegek alapján ítélik meg egymás fertőzöttségét. Clayton (1990) szerint a házigalamb tojók preferálják a kevésbé fertőzött hímeket, és a fertőzöttség mértékét valószínűleg a tollászkodás intenzitása alapján becsülők. Kose et al. (1999) szerint a füstifecskében a farktollak fehér foltjainak nagyobb méretét preferáló ivari szelekció folyik. Mivel a fehér felület némileg kedvezőbb a tollakat rágozó tetvek számára, mint a fekete felület (a melanintől keményebb a toll), ez a szignál talán a hátrányelv (Zahavi 1975) alapján értelmezhető.

2.1.9. Madarak tetvek elleni védelme és a tetvek kitérési válaszreakciói
Ha a fertőzést nem sikerült elkerülni, akkor a madár megkísérelheti különféle védekezési reakciókkal kiirtani a tollazatában élő tetveket. Úgy tűnik, hogy a tetvekre ható legjelentősebb predációs nyomást a gazdamadarak mechanikai önvédelme jelenti (Clayton 1991b). A madarak csörükkel tollászkodnak és lábukkal vakaródnak. E viselkedésformák részben a tetvekre való vadászatnak tekinthetők. A vadon élő madarak a nappal mintegy 10%-ban (0,3 %-25,4 %) tollászkodnak és vakaródnak (Cotgreave & Clayton 1994).
A fej és nyak felülete nem érhető el a csőrrel, ezért a madár ezt lábával vakarja. Ez azonban a tollászkodásnál kevésbé hatékony mód a tetvek eltávolítására, legalábbis ezt sugallja a fej-specificus tetvek nagy mérete és széles alakja. Clayton & Cotgreave (1993) fajok közti összehasonlító elemzésben kimutatta, hogy a különösen nagy csőrű madarak (pl. tukán, gulián, pelikán fajok) csőrük tollászkodásra való viszonylagos alkalmatlanságát úgy kompenzálják, hogy a lábbal való vakaródzás arányát növelik a csőrrel való tollászkodás kárára. A fej és a nyak védelme sok madárfajban megoldódik, ha a madár egy alkalmas szexuális vagy szociális partnerre tesz szert, mely csőrével kurkássza partnere nyakát és fejét.

A tollászkodás elől való kitérésre szolgáló adaptációk a tetvek testtaj-specifikása, testmérete, alakja, rejtőszíne, a tollazat alkalmas ésugaiban való rejtőzködés képessége, valamint a fény előli menekülés. A tollászkodás sok fajban kísérletesen gátolható, például egy „csippentő” (egy C alakban meghajlított drót, melynek végeit a galamb orrnyílásaiban rögzítve akadályozza csőrkát pontos záródását, Clayton 1991b), vagy a felső csőrkáva hegyének 1-2 milliméternyi csonkítása révén (Rózsa 1993b). A csőrével tollászkodni képtelen madáron nemcsak a tetvek mennyisége nő meg ugárászerűen, de az átlagos testmérete is. Mindezt azt jelzi, hogy a tollászkodás igen erőteljes irányító szelektió fajt ki a tetvek méretének csökkentésére, és a tollászkodás hiánya már néhány generáción 1-2 hónapon belül is mérhető mikroevolúciós változásokat eredményez (Clayton et al. 1999).

Közismert, hogy a tollászkodás egyik funkciója a farktőmirigy (glandula uropygii) által képzett zsír felhordása a tollazatra. Korántsem minden madáron van farktőmirigy. A struccok (Struthionidae), nanduk (Rheidae), kazuárak (Casuariidae), tűzokok (Otididae), galambok (Columbidae), papagájok (Psittacidae), bagolyfecskék (Podargidae), és harkályok (Picidae) sok fajából hiányzik. Léte vagy hiánya olykor – például a házigalambnál – még fajon belül is változó. A mirigyváladék nem csak zsírokat tartalmaz, hanem antibakteriális hatóanyagokat is, és in vitro kísérletben a tetvek ellen is hatásosnak tűnik (Moyer et al. 2003).

Sok madár idegen kémiai hatóanyagokkal kezeli tollazatát. Ennek egy látványos módja a hangyázás, mely eddig mintegy kétszáz madárfaj esetében ismert, sajátos védekezési mód. Ennek ektoparazita fertőzések elleni hatására eddig kevés adat utal. Sok madár használ aromás növényeket a fészek belésében, de ezek esetleges inszeptcid vagy repellens hatása nem kielégítően ismert (Moyer & Clayton 2003).
A madarak gyakran napoznak, vagy porban, vízben fürdenek, és mert a különösen száraz vagy különösen nedves tollazat a tetvek számára hátrányos tűnik, felmerül a gyanú, hogy e viselkedésmódok is védelmet nyújthatnak a tetvek ellen. Erről ma még alig tudunk valamit, jobbára még az is feltáratlan, hogy a madarak mely taxonjaiban milyen fürdési módok fordulnak elő. Pedig vannak taxonómiai lag determinált mintázatok, hiszen például a galambalakúak (Columbiformes) sosem fürdenek porban.

A vérszívó izeltlábúak általában nyálat juttatnak a sebbe, hogy különböző hatóanyagokkal érzéstelenítsenek és manipulálják a helyi vérkeresztet. Ezért az izeltlábúak vérszívásával szemben rendszerint lehetséges az immunológiai védelem, ahogyan például a szívötetvek és az emlősök kapcsolatában is régóta ismert (Colwell & Himsl-Rayner 2002), hiszen az immunnalasz kicsapthatja a nyál hatóanyagait. Nyilván a madarak is mutathatnak immunválaszt a bunkóscsápú tetvekkel szemben, bár ezt közvetlenül még senki sem vizsgálta.

2.1.10. Tetvek és az emberi faj korai története

A haj- és ruhatetű (Pediculus humanus ssp.) legközelebbi rokona a csimpánzon élő Pediculus schaeffi Fahrenholz, 1910. Ésszerű ezért azt feltételezznünk, hogy e tetvek nem az evolúciós közelmúltban történt gazdaváltással kerültek az emberi fajra, hanem őseik az ember és a csimpánz közös őseként szolgáló korai Hominidák parazitái voltak. E tetvek kutatásának eredményei tehát érdekes adalékokkal szolgálhatnak az emberi faj prehisztorikus történetéről is.

A közelmúltban Reed et al. (2004) molekuláris vizsgálatok alapján megmutatta, hogy a modern Pediculus humanus két genetikailag jól elkülönült kládból áll. Ezek egyike amerikai, és csak fejtetvek alkotják, másika viszont globálisan elterjedt, és fejtetvek valamint ruhatetvek együtt alkotják. Ez utóbbi klád mintegy 100.000 évvel ezelőtt áttesett egy jelentős populációméret-beszűkülésen (bottleneck), amely időben egybeesik a modern emberi faj történetében kimutatható hasonló eseménnyel. A két klád egymástól való elkülönülése mintegy 1,18 millió évvel ezelőttre tehető, vagyis egy nagyságrenddel megelőzi a modern Homo sapiens kialakulását⁵. A szerzők szerint valószínűtlen, hogy a tetvek e két kládja sokáig együtt fordult volna elő azonos gazdaként. Mindez inkább azt jelzi, hogy a

⁵ Valószínűnek látszik, hogy e két klád két jól elkülönült biológiai fajt reprezentál.

A fejtetű (*Pediculus humanus capitis*) és ruhatetű (*Pediculus humanus humanus*) két olyan forma, melyek ökotípus, alfaj vagy faj volta máig erősen vitatott (Leo *et al.* 2002; Leo *et al.* 2005). Érdekes adalék azonban fajunk történetéhez, hogy a két forma elkülönülése nagyjából az emberi ruházkodás megjelenésével egyidőben, mintegy 72.000 (± 42.000) évvel ezelőtt történt (Kittler *et al.* 2003).

![2. ábra. Reed *et al.* (2004) interpretációja az emberi fajok (szürke mezők) és a *Pediculus humanus* két nagy kládja (fekete vonalak) eredetéről.](image-url)
2.2. A testtáj-szegregáció kialakulásának egy lehetséges evolúciós mechanizmusa

Az egyazon madárfajon együtt élő különböző tetűfajok rendszerint eltérő testtájakra specializálódnak, tehát testtáj-szegregációt mutatnak. Ez nemcsak a tetvesség esetében, de szinte minden más élősködő-együttesben is alapvető mintázat. Próbálták ezt a táplálékforrásokért folyó kompetícióval magyarázni (Clay 1949b; Marshall 1981), csakhogy pl. a vér szívő fajok ugyanazt a táplálékforrást fogyasztják, akár térben elkülönültek egymástól, akár nem. Rohde (1991) szerint a testtáj-szegregáció adaptív értéke az együtt élő rokon parazita-fajok közti szexuális izoláció és a nemi partnerek egymásra találása. Ennek némileg ellentmond, hogy ilyen szegregációt mutatnak a parthenogenetikus és a fejlődési ciklusuk ivartalan szakaszában lévő paraziták is. Tetvek esetében pl. éppen a pete stádium mutat legmarkánsabb térbeli szegregációt (Baum 1968), noha a serkék természetesen nem táplálkoznak és nem keresnek nemi partnert.

1. a gazdák eltérő védekezési módokkal csökkenthetik az eltérő testtájakon élő paraziták egyedszámát;
2. az eltérő testtájakon élő paraziták különböző kitérési módokkal kerülhetik el gazda támadásait;

3. mind a gazda védekezésnek, mind pedig a parazita elkerülési módoknak változatos genetikai hátttere van;
4. a gazdák védekezése egyre hatékonyabb elkerülési módokra szelektálja a parazitákat;
5. a paraziták szaporodása egyre hatékonyabb védekezésre szelektálja a gazdákat;
6. negatív cserearány áll fent a paraziták elkerülési képességeiben az egyik illetve másik testtájon;
7. és negatív cserearány áll fent a gazdák védekezési képességeiben az egyik illetve másik testtájon.

Mi működteti e fajszelekciós mechanizmust? Egyrészt a 6. és 7. pontban említett negatív cserearányok. Ha egy parazita populáció mikroevolúciós folyamatok által fokozza az egyik testtájon való túlélési képességét, akkor ezzel bizonyos mértékig csökkenti a másik testtájon mutatott hasonló képességét. Hasonlóképp, ha a gazdapopuláció fokozza az egyik testtáj védelmét (pl. több erőforrást allokál e célra), akkor szükségképpen csökkenti a másik testtáj védelmét (kevesebb erőforrást allokál e célra). Ezekután, ha a két parazita-faj véletlennél különböző testtájakra specializálódott, akkor a gazdafaj védekezési specializációja jellegzetes ingadozást mutat; mindig annak a testtájnak védelmét erősíti, amelyen több parazita épüle több parazita él. Ezért aztán a másik testtáj védelme gyengül, és hamarosan már azon él több parazita stb. Ha viszont mindkét parazita-faj azonos testtájra specializálódott (ennek esélye modellünkben 0,5), akkor a gazda folyamatosan e testtáj védelmét erősítette, és az egyik parazita-faj véletlen „mintavételi hibák” halmozódásának eredményeként szükségszerűen kihalt. E kihalási mechanizmus azonos a populációgenetikából ismert genetikai drift mechanizmussal, amely kisméréttő populációnban az allél-változatok kihalásáért felelős.
A fenti feltételek talán komplikáltnak tűnhetnek, de biológiailag valószerűek, és számos természetes ektoparazita együttest jellemezhetnek. Nemcsak a tetvek esetében tűnik e szegregációs mechanizmus realismátusnak, de a közelmúltban pl. ilyen elven működő testtáj-szegregációt írtak le denevéren együttélő ektoparazita légylégyok esetében is (ter Hofstede 2004).
2.3. A gazda csoportos életmódjának hatása a tetvességre: esettanulmány két varjúfajon

2.3.1. Bevezetés

A telepesen fészkelő és csoportosan élő madarakon vélhetően több élősködő él, mint a territoriálisan költő és kevessé csoportosuló madarakon, hiszen a gazdaegyedek térbeli közelsége kedvez a paraziták terjedésének. E hipotézis tesztelésére két közelrokon varjúfaj tető fertőzöttségét, melyek közül a vetési varjú (Corvus frugilegus) inkább csoportos, míg a dolmányos varjú (Corvus corone cornix) inkább magányos életmódot él (Madge & Burn 1993). Elemeztük a tetvek abundanciáját és fajgazdagságát, valamint a gyakorisági eloszlások alakját és az ivararányokat. Mindkét varjúfajon 5-5 tetőfajt találtunk, melyek ugyanazt az 5 génuszt képviselő fajpárok vagy populáció-párok.

A mintában előforduló leggyakoribb génuszok (Myrsidea, Philopterus, Brueelia) esetében már korábban is dokumentálták a nem-egyensúlyi (0,5-től eltérő) ivararányokat (Wheeler & Threlfall 1986; Clayton, Gregory & Price 1992). Ezért a varjak tetvei lehetőséget adnak a nem-egyensúlyi ivararányok és a gazda szocialitása közti esetleges kapcsolat elemzésére.

Dolgozatunkban a tetvesség alábbi mutatókat hasonlítjuk össze a két gazdafaj között:

1. a kongenerikus fertőzésének prevalenciája;
2. a kongenerikus infrapopulációk egyedszáma (csak imágók)

3. a gazda-egyedenként tetű-együttesek fajgazdagsága;

Clayton et al. (1992) szerint a tetvek nem-egyensúlyi ivararányai valószínűleg a lokális ivari versengésre (LMC) vezethetők vissza. LMC akkor alakul ki, ha a populáció sok, egymástól részben elszigetelt részre szakad, ahol a belenyésztés jelentős (Hamilton 1967). Ilyenkor a nőstények azáltal maximalizálják szaporodási sikerüket, hogy utódaik között csökkentik az erősebben versengő ivar (rendszerint a hím) arányát. Ha a madarak tetveinél is LMC okozza a nem-egyensúlyi ivararányokat, akkor az alábbi két predikció tehetjük:

5. A nagyobb infrapopulációk nagyobb eséllyel erednek többszörös fertőzésekől, ezért itt a tetvek párzási rendszere váratlanul közelebb áll a véletlenszerűhöz, tehát kevésbé belenyészttet mint a kisebb infrapopulációkban. Ezért a kisebb infrapopulációkban 0,5-től jobban eltérő ivararányokat várnak.

6. A kevésbé szociális gazdafaj esetében az infrapopulációk izoláltabbak, és ezért itt 0,5-től jobban eltérő ivararányokat várnak.

2.3.2. Anyag és módszer

Az alábbi paramétereket és statisztikai eljárásokat használtuk.

1. Prevalencia (fertőzött madarak / megvizsgált madarak). Az azonos génuszba tartozó, de eltérő gazdafajokról származó minták értékeit χ² próbával hasonlítottuk össze.

2. A kongenerikus infrapopulációk méretének összehasonlításához Mann-Whitney U-tesztet használtunk.
3. A tetvesség gazdaegyedenkénti fajgazdagsága. A madáregyedeket fajgazdagsági osztályokba soroltuk, majd ezen osztályok közti eloszlásaikat χ^2 próbával hasonlítottuk össze.

Mivel a fenti két χ^2 próba során a gyakoriság várható értékei egyes cellákban jóval 5 alatt voltak, ezért az eltérések szignifikációját Monte Carlo szimulációkkal (2000 randomizáció) is elemeztük. A Monte Carlo szignifikancia szintek megegyeztek az előző eredményekkel. Megjegyezzük, hogy a fertőzöttség fenti jellemezői nem függetlenek egymástól.

A statisztikai tesztek kétoldalasak.

2.3.3. Eredmények
Ugyanaz az 5 tető génusz fordult elő mindkét gazdafajon (l. táblázat). Két kongenericus fajpár (*Myrsidea* spp. és *Philopterus* spp.) példányszáma volt elég nagy ahhoz, hogy valamennyi elemzésben szerepeljen.

1. A 89 dolmányos varjú 53%-a (47) volt fertőzött imágó tetővel, míg a 37 vetési varjú 92%-a (34) mutatott hasonló fertőzést. Génuszonként külön vizsgált
prevalencia szignifikánsan nagyobbnak bizonyult a vetési varjún a *Myrsidea, Philopterus, Brueelia* és *Colpocephalum* fajok esetében ($\chi^2=18.18$, df=1, p<0.01; $\chi^2=4.78$, df=1, p<0.03; $\chi^2=32.32$, df=1, p<0.01; $\chi^2=19.25$, df=1, p<0.01, sorrendben). A *Menacanthus* prevalencia nem különböző ($\chi^2=0.00$, df=1, p>0.96) a két varjúfaj között.

2. Ezzel szemben a *Myrsidea* és *Philopterus* infrapopulációk mérete – tehát a fertőzés intenzitása – nem mutatott szignifikáns eltérést (Mann-Whitney teszt, U=286.0, p>0.33; illetve U=340.5, p>.56), míg a többi génuszra ez a kis mintaelemszámok miatt nem volt tesztelhető.

3. A dolmányos varjak egyedi fertőzöttségének fajgazdásága átlagosan 0.81 volt, míg a vetési varjaké 2.08 (a fertőzetlen madarak nulla értékeit is beszámítva). A két varjúfaj egyedeinek a fertőzések fajgazdásági osztályai között való eloszlása szignifikánsan különböző ($\chi^2=32.59$, df=4, p<0.001).

![Diagram](image)

4. ábra. A vetési és dolmányos varjak egyedszámainak megoszlása a tetvesség fajgazdásági kategóriák között.

4. A *Myrsidea* és *Philopterus* gyakoriági eloszlási nagyobb aggregáltságot mutattak a dolmányos varjakon (*M. cornicis* : $k=0.10$, df=8 és *P. ocellatus* $k=0.11$, df=8), mint a vetési varjakon (*M. isostoma*: $k=0.19$, df=8 és *P. atratus* $k=0.16$, df=8). AZ eloszlások alakjának különbsége szignifikáns volt a *Myrsidea* génuszban.
\(\chi^2=29.05, \text{df}=7, \ p<0.001 \), míg a Philopterus génuszban nem volt szignifikáns \(\chi^2=12.87, \text{df}=7, \ p<0.08 \).

5., 6. A Myrsidea és Philopterus ivararányok nőstény-túlsúlyt mutattak (l. táblázat). Az ivararány (a hímek aránya az összes imágó között) az infrapopuláció-

mérettel növekedett (5. ábra, \(F=5.41, \text{df}=1, \ 52, \ p<0.02 \)). Az ivararányok közelebb álltak az egyensúlyi 0,5-ös arányhoz a vetési varjak tetvei esetében, és szélsőségesebben eltértek attól a dolmányos varjak tetveinél \(F=4.15, \text{df}=1, \ 52, \)
p<0,05). Sem a tetű-génusz, sem a tetű-génusz és a gazdafaj közti interakció nem bizonyult szignifikáns faktornak (F=0,98, df=1, 52, p>0,32; és F=0,03, df=1, 52, p>0,86, sorrendben). Ezért a Myrsidea és Philopterus génuszok adatait összevontuk, de ez az ivararány-intenzitás összefüggés szignifikanciáját nem változtatta. A reziduálisok normális eloszlást mutattak (χ²=4,65, df=5, p>0,46). Az extrém értékek eltávolítása (intenzitás>40) nem változtatott az eredményen; a gazdafaj szignifikáns hatása tehát nem néhány kivételesen fertőzött egyed által okozott műtermék.

2.3.4. Megbeszélés

Ugyanakkor ellentmond várakozásainknak és a széles körben elterjedt nézeteknek, hogy a telepesen költő és egész évben is csoportos életmódot élő gazdafajon a fertőzések intenzitása nem volt nagyobb, mint a territoriális gazdafajon.

A nem-egyensúlyi ivararányokkal kapcsolatos eredményeink teljes összhangban vannak azzal a feltevésünkkel, hogy ezek voltaképpen a lokális ivararányok, és az egyensúlyi 0,5-ös értéktől való eltéréseik mértéke tükrözi az infrapopulációk izoláltságának mértékét. A bunkóscsápú (Myrsidea) és a fonalascsápú tetvek (Philopterus) ivararányai hasonló eredményeket adtak. Az ivararány eredmények értékelése kapcsán azonban három alternatív hipotézist is meg kell említenünk.

1. Mintavételi hiba. A nőstények könnyebben gyűjteni, mert nagyobb testméretűek, ami a minta nőstény-túlsúlyát okozhatja. Ezzel szemben a nőstények nagyobb mérete a nagyobb mortalitásukat okozhatja, ha a tollászkodás során a

3. Fisher (1930) klasszikus ívararány-elmélete szerint az optimális viselkedés a különböző nemű utódok létrehozásába egyforma erőforrásokat befektetni. Ha tehát az eltérő nemű utódok létrehozásának eltérének a költségei, akkor optimális lehet az „olcsóbb” ívarból több példányt létrehozni. Csakhogy a tetveknél nincs ismert ívari testméret dimorfizmus a pete stádiumban, és nincs ismert ívadékgondozás („szülői befektetés”) a pete stádium után.

Jelen dolgozat az első próbálkozás a telepes és territoriális madarak tetvességének kvantitatív összehasonlítására. Az eredmények a telepes madárfajon nagyobb mértékű fertőzési lehetőséget jeleznek, melynek következtében az infrapopulációk izolációja lecsökken.
2.4. A madarak tetveinek gyakorisági eloszlása

2.4.1. Bevezetés

Ezzel szemben a tolltetvek ragályosan terjedő paraziták, fertőzési esélyeik a gazdák közti közvetlen testi érintkezések gyakoriságától függenek. A territoriális dolmányos varjú és a kolonialis vetési varjú közti összehasonlításban a tető szubpopulációk hasonló átlagos intenzitást (egyedszámot) mutattak, de a telepes gazdán kevésbé aggregált eloszlásuk és ezért magasabb prevalenciájuk volt, ami arra utalhat, hogy a gazda csoportos életmódja elősegítheti terjedésüket (Rózsa et al. 1996). A szintén ragályosan terjedő tollatkák is magasabb prevalenciát mutatnak a csoportos gazdafajokon, mint a territoriális fajokon (Poulin 1991).

E fejezet célja, hogy a gazda csoportos életmódjának a tolltetvek gyakorisági eloszlására gyakorolt esetleges hatását vizsgáljuk. Elemzéseinke telepesen költő gazdafajok 12 tetőfajának, illetve territoriális gazdafajok 15 tetőfajának gyakorisági eloszlásainak összevetésén alapulnak.

2.4.2. Anyag és módszer

Rékási József faunisztikai vizsgálataiból származó adatainkat a tőkésréce (Anas platyrhynchos), erdei szalonka (Scolopax rusticola), balkáni gerle (Streptopelia decaocto), vetési varjú (Corvus frugilegus) és dolmányos varjú (Corvus corone cornix) fertőzésekéről az II. táblázat foglalja össze. Ezek az adatok a Magyarország és Romáния parazita-faunisztikai feltárása során születtek. A példányok zömét vadászatok során löttek. A tetveket a tollazatot szabad szemmel átkutatva, csipesszel gyűjtötték. Az alacsony prevalenciát (<10%) mutató tetőfajokat kihagytuk a jelen vizsgálatból. Ezen eloszlások közül négyet már egy másik cikkben is felhasználtunk (előző fejezet). Ott azonban csak az imágók egyedszámai használtuk, viszont itt – a más fajokkal való összehasonlíthatóság megteremtése céljából – most a lárvaegyedeket is beszámítjuk. További 12 tetőfaj gyakorisági eloszlásait a III. táblázatban jelzett szakirodalmi forrásokból gyűjtöttük.

A továbbiakban a tetvek szubpopulációjának nevezzük az azonos gazdaegyeden élő azonos fajú tetvek összességét (lárvák és imágók, peték nélkül). A prevalencia (%) a fertőzött gazdaegyedek aránya teljes mintában. Az abundancia a szubpopulációk mérete (egyedszáma), amely a nem-fertőzött egyedre is értelmezve nulla értéket is felvehet.

A gazdaegyedeket 22 fertőzöttségi osztályba soroltuk (0, 1, 2, ... 20, és >20 tető madáregyedenként). A negatív binomiális eloszlás k kitevőjét és az elméleti eloszlások várható értékeit a Bliss & Fisher (1953) által leírt maximum likelihood módszerrel számítottuk. Az 1-nél kisebb várható értéket mutató osztályokat összevontuk. A tapasztalt és az elméleti eloszlások illeszkedését χ² próbával teszteltük (egyszempontos csoportosítás, szf= osztályok száma - 3).

A negatív binomiális eloszlás k exponencét, valamint a tapasztalt és elméleti eloszlás közti illeszkedési vizsgálatát az itt áttekintet cikkekben legtöbbször mérzéketatlan módon végezték. A szerzők a legegyszerűbb módon becsülik k értékét (k =x2/(s2-x)), noha ez közismerten megbízhatatlan az olyan erősen aggregált eloszlások esetén, amelyek a tetveket is jellemzik (Southwood 1978; Krebs 1989). Az alacsony változó értékekkel jellemzett fertőzöttségi osztályok egybevonása gyakran nem történt meg, vagy ennek szabályai nem világosak. Ezeket az adatokat tehát újraszámítottuk, hogy a saját adatainkkal való összehasonlítás lehetőségét megteremtsük.

Az abundancia átlaga és varianciája közti kapcsolatot lineáris regresszióval elemeztük. Az értékeket log-transzformáltuk. A log (variancia) a log(átlag) lineáris függvényével becsülhető (lineáris regresszió, $r=0,8552$, $F=68,069$, sz.f.=26, $P<0,0001$). A regressziós egyenes ($y=1,81\times+0,85$) alapján becsült várható értékeket kivontuk a tapasztalt értékekből, és az így nyert reziduálisokkal jellemeztek a variancia várható értékeitől való eltéréseit.

A statisztikai tesztek kétoldalasak, a számításokat InStat 2.01-el végeztük. A gazda egyedszám – mely a eloszlások egyes mérőszámainak várható értékét befolyásolhatja (Gregory & Woolhouse 1993; Poulin 1993; 1996) – nem mutatott szignifikáns különbséget a madárfajok két csoportja között (Student-féle t próba=0,2450, sz.f.=25, $P>0,80$). Hasonló képp, a gazdafajok testtömege – mely korrelál a tetvek abundanciájával (Poiani 1995; következő fejezet) – nem mutatott szignifikáns különbséget a két csoport között (testtömeg adatok Dunning (1993) nyomán, Mann-Whitney U-statisztika=69,0, $N_1=12$, $N_2=15$, $P>0,32$). E szempontok szerint tehát a telepes és territoriális madárfajok közti összehasonlítás nem torzított.

2.4.3. Eredmények

A 27 ismert tolltetű eloszlás leíró statisztikái a III. táblázatban találhatók. Az abundancia varianciája minden esetben meghaladta az átlagát, ami az aggregált eloszlások jellemzője. Négy tapasztalt gyakorisági eloszlás szignifikánsan különbözőt ($P<0,05$) a negatív binomiális modelltől, míg két esetben az eloszlás illeszkedése nem volt vizsgálható a fertőzöttségi osztályok alacsony száma (Trinoton luridum), illetve az adatok hiányosságai (Philopterus capillatus) miatt.

A tetűfajok abundanciájának átlagai és varianciái (log-transzformáció után) nem különbözték a telepesen illetve territoriálisan költő gazdafajok között (Student-féle t-teszt $t=1,3360$, sz.f.=25, $P>0,19$, Mann-Whitney U-statisztika=86,5, $N_1=12$, $N_2=15$, $P>0,86$). Ezzel szemben a varianciának az átlag alapján várható értékeitől való eltérései (reziduálisok) szignifikáns eltérést mutattak (Mann-Whitney U-statisztika=6,0, $N_1=12$, $N_2=15$, $P<0,0001$). A telepes madarak fertőzései

33
szignifikánsan kevésbé változatosak, mint azt a fertőzések átlagos abundanciája alapján várhatnánk.

Az egyes tetőfajok prevalenciája (%) szignifikánsan magasabb a telepesen költő gazdafajokon, mint a territoriálisan költő madarakon (Mann-Whitney U-statisztika=12,0, N₁=11, N₂=15, P<0,0001). A tapasztalati eloszlásokat legjobban közelítő negatív binomiális modell k kitevője, illetve a diszkrepancia index (D) szintén szignifikáns eltéréseket mutatott (Mann-Whitney U-statisztika=19,0, N₁=12, N₂=15, P<0,0002; Mann-Whitney U-statisztika=10,5, N₁=9, N₂=13, P<0,001), az eltérések iránya a territoriális madarak tetveinek nagyobb aggregáltságát jelezte.

2.4.4. Megbeszélés

A gyakorisági eloszlás aggregált jellege közismert a parazita ökológiában. A variancia nagyobb volt az átlagnál az általunk vizsgált minden eloszlás esetében, ezek tehát mind aggregált eloszlások. Szokatlan viszont, hogy egy elterjedt vélekedéssel szemben nem minden tapasztalati eloszlás követte a negatív binomiális modell által jósolt alakot. A tetvek abundancia-varianciájának reziduálisai szignifi-
káns eltéréseket mutattak a különböző szocialitással jellemzett gazdafajok között, azt jelezve, hogy a territoriális fajokban a szubpopulációk mérete változatosabb.

A prevalencia alacsonyabb volta a territoriális fajokban nyilván összefügg az előző eredménnyel. Ennek értékét azonban korlátozza, hogy az alacsony prevalenciájú (<10%) fajokat eleve kizártuk a vizsgálatból.

Mind a negatív binomiális modell k exponente, mind pedig diszkrepancia index (D) az eloszlás aggregáltságának jellemzésére szolgál. Az előbbi értéke korrelált a gazdafaj szocialitásával, csakhogy egyes fajok tapasztalt eloszlása nem illeszkedett az elméleti modellhez, ráadásul az irodalomban közölt k értékek számításának módját gyakran metodikai zavarok is terhelik. Ezért az eredményeket fenntartásokkal kell fogadnunk. A diszkrepancia index (D) bevezetése idején heves vitákat gerjesztett (Ploeger 1994; 1996; Poulin 1995; 1996), de használata mégis előnyös, mert mentes a fenti problémáktól.

Elemzésünk hátránya, hogy a vizsgált fajok nem torzítatlanul reprezentálják a madarak osztályát. Mintánkban pl. az énekesek rendje alulreprezentált ($\chi^2 =16,647$, sz.f.=1, $P<0,0001$) (Sibley & Monroe 1990 adatai alapján). A filogenetikai kapcsolatokra való kontrollként komparatív eljárásokat nem alkalmazhattunk, hiszen a gazda-parazita eloszlások jellemzői a gazda-parazita fajpárok közös tulajdonságai, nem pedig csak a gazda, vagy csak a parazita tulajdonságai. Ezért filogenetikai kontroll céljára sem a gazda, sem a parazita törzsfák alkalmazása nem volna önmagában indokolt, a kétféle törzsfa hasonlósága pedig megkérdőjelezhető. Mindezek ellenére is eredményeink azt jelzik, hogy a tetvek eloszlásai aggregáltabbak, ezért prevalenciájuk alacsonyabb a territoriálisan költő gazdafajokon.

2.4.5. Kitekintés: egy hasonló gazda-parazita rendszer
A tolltetvek gazdapopuláció belüli gyakorisági eloszlásaihoz nagymértékben hasonló eloszlást mutat a *Carnus hemapterus* légyfaj is. Mindez azért figyelemre méltó, mert ez a faj egy olyan légy-génusz képviselője, melynek életmódja – madarak költakarójában élő vérszívók – sok tekintetben másodlagos hasonlóságot mutat a tetvek életmódjával (Liker *et al.* 2001).
2.5. A madarak tetveinek abundanciája

2.5.1. Bevezetés

Jelen fejezet célja a tolltetve átlagos abundanciájának elemzése madárfajok közti összehasonlításban. Az átlagos abundancia a paraziták átlagos egyedszáma gazdaegyedenként, a nem-fertőzött egyedek nulla értékeinek is beleszámításával.

Dolgozatomban tehát a gazdafaj testméretének és szocialitásának a tetvesség átlagos abundanciájára gyakorolt esetleges hatásait elemzem. Szemben az előbb említett dolgozatokkal, a tetvesség átlagos abundanciája itt az azonos gazdaegyedeken élő különböző tetűfajok összesített egyedszáma vonatkozik. Ez gyakorlatilag azt jelenti, hogy az együtt előforduló különböző tetűpopulációkat egyetlen guild képviselőjének tekintem, és e guild mennyiségi viszonyait elemezem.

A közelrokon fajok gyakran nem az ökológiai kényszerek hatására ismételten kialakuló párhuzamos evolúciós események, hanem pusztán a rokonságból fakadó hasonlóság miatt mutatnak hasonló tulajdonságokat. Ezért félrevezetők azok a statisztikai módszerek, amelyek a fajok tulajdonságait független eseményeként kezelik, hiszen a „törzsfejlődési tehetetlenségből” adódó hasonlóság két tulajdonság közti összefüggést okozhat minden adaptív ok nélkül is (Felsenstein 1985; Harvey & Pagel 1991). Így pl. a sejtmag nélküli vörösvérsejt és a szőrös kültakaró együttesen hiányzik vagy együttesen van jelen a mai gerinces fajokban. Hibát valóban azonban azt gondolnunk, hogy ezek valamilyen élettani vagy ökológiai korlát miatt szükség-

2.5.2. Anyag és módszer

1: sem telepes költést, sem a költési időn kívüli rendszeres csoportos életmódot nem mutatnak (családi kötelékek vagy laza ideiglenes csoportosulások előfordulhatnak);
2: jellemzően csoportos madarak, melyek territoriálisan költenek, vagy jellemzően telepesen költő madarak melyek nem csoportosulnak rendszeresen a költési időn kívül, vagy fakultatív telepes madarak a költési időn kívül mérsékelt csoportosulási hajlammal;
3: jellemzően telepesen költő és a költési időn kívül is csoportokban élő madárfajok.

A madarak szociális viselkedésének szöbéli leírását nehéz számszerűsíteni, bizonytalan esetekben néhol köztes rangszámokat (1,5 vagy 2,5) alkalmaztam. A szocialitás rangszámokat Cramp (1984; 1985; 1988), valamint Cramp & Perrins
Az első lépésben a fajok adatait független statisztikai eseményeknek tekintettem. E megközelítés gyakorlatilag azt a véleményt tükrözi, hogy a tetvesség abundanciája a gazdafaj annyira képlenyen, gyorsan változó tulajdonsága, hogy „törzsfejlődési tehetetlenség” nem befolyásolja megfigyelt értékeit. A gazdafaj testtömegének és a tetvesség abundanciájának kapcsolatát lineáris regresszióval elemeztem. Az így leírt lineáris modell (lásd később) alapján a tetvesség várható és tapasztalt értéke közti különbségeket; azaz reziduálisokat számítottam. A madarak szocialitásának rangszáma és e reziduálisok között Spearman-féle rangkorrelációval kerestem összefüggést.

2.5.3. Eredmények és megbeszélés
A log (x+1) transzformált tető-abundancia értékek a log(x) madár-testtömeg lineáris függvényként írhatók le (lineáris regresszió, r=0,745, F=42,499, sz.f.=35, P<0,0001). A regressziós egyenes (y=0,73*x-0,50) alapján számított reziduálisok azonban nem mutattak szignifikáns kapcsolatot a gazdafaj szocialitásának rangszámaival (r_s=0,283, p>0,09, N=36).

A 36 madárfaj rokonsági kapcsolatait egy 24 elágazási pontot tartalmazó leegyszerűsített törzsfa mentén ábrázoltam. E törzsfa segítségével szignifikáns pozitív kapcsolatot találtam a testtömeg kontrasztok és a tetű-abundancia kontrasztok között (lineáris regresszió az origón keresztül, t=4,249, sz.f.=23, P<0,001). A regressziós egyenes (y=1,04*x+0,00) alapján kiszámítottam az abundancia várható értékeit, melyeket kivontam a tapasztalati értékekből, hogy megkapjam a reziduálisokat. A gazdafaj szocialitásának rangszámaiból számított kontrasztok nem mutattak összefüggést e reziduálisokkal (r_s=0,019, p>0,92, N=24).

8. ábra. Az előző ábrán illusztrált összefüggés a madárfajok átlagos testtömege és átlagos tetű-abundanciája között, filogenetikai kontroll után.

Az anekdotikus ismerteket megerősítve szignifikáns pozitív kapcsolatot találtam a gazdafajok átlagos testmérete és tetvességük átlagos abundanciája között. E kapcsolat nem a fajspecifikus parazita-együttesek „törzsfejlődési tehetetlensége” által okozott műtermék, hanem a törzsfán egymástól függetlenül újra meg újra megjelenő összerendezett változások következménye. Három alternatív hipotézis magyarázhatja e jelenséget:

(1) A gazdaegyedeket tekinthetjük a paraziták megtelepedésére alkalmas habitat-szigeteknek (ezzel szemben lásd Kuris et al. 1980). Nagyobb habitat-szigeten több parazita egyed előfordulása várható.

(3) Végül a madárfajok testmérete összefügg a várható élettartamukkal (Gill 1990). A gazdaegyed hosszabb élettartama elényös lehet a kevéssé virulens parazitáknak, mert számukra a továbbfertőzés esélye a populációövekedést korlátozó tényező (Ewald 1994). A kistestű madarak tetveinek gyakrabban kell újabb és újabb gazdaegyedeket fertőzni, miközben mortalitásuk vélhetően nagyobb, mint életük más szakaszai.

Jelenlegi eredményeink nem kielégítők annak eldöntésére, hogy a fenti hipotézisek közül mely vagy melyek tükrözik az itt leírt jelenség ok-okozati hátterét. Mindenesetre e hipotézisek nem egymást kizáró jellegűek.

Madarak tollatkáiról mások által publikált (Behnke et al. 1995) adatokat elemezve azt is sikerült kimutatni, hogy ez a jelenség más ragályos ektoparazita csoportban is előfordul. Filogenetikai kontroll után a tollatkák (Acari:...
Proctophyllodidae) abundanciája is a gazdafaj testtömegének függvényében változik (Rózsa 1997b).

Korábbi anekdotikus ismeretekekkel szemben (Dubinin 1947, Blagoveshchensky 1959) a gazdamadarak szocialitása nem bizonyult a tetvek mennyiségét befolyásoló tényezőnek. Mindezzel ellentmond annak a széles körben elterjedt nézetnek, hogy a gazda szociális életmódja szükségképpen növeli az ektoparaziták mennyiségét. Ez az összefüggés tehát nem minden ektoparazita csoport esetében igazolható.

Eddigi ismereteink szerint tehát a tetvek szubpopulációi nem népesebbek a telepesen költő, mint a territoriálisan költő madárfajokon, talán a tetvek elleni védekezési módok alapvetően hasonló módja miatt. E téren tehát a telepes költési mód nem jár többletköltségekkel a madarak számára, szemben más ektoparazitákkal (kullancsok, bolhák és poloskák), melyek esetében ezt kimutatták. A tetvek esetében ez talán éppen ellenkezőleg valósul meg.

Ha a tetvek – és az általuk okozott károsodások – mennyisége a telepes és territoriális madarak között hasonló, de az utóbbi csoportban változatosabb eloszlást mutat, akkor azt kell feltételeznünk, hogy inkább a territoriális gazdafajokban, alacsonyabb prevalencia mellett fejhetnek ki erősebb szelekciós nyomást gazdafajaikra. Ennek tükrében ironikus, hogy már a mi saját idevágó eredményeinket is interpretálták – tévesen – oly módon, mintha azok a telepes madarakra ható nagyobb parazita-eredetű szelekciós nyomás bizonyítékai volnának (Krause & Ruxton 2002).
2.6. A madarak tetveinek taxonómiai diverzitása

2.6.1. Bevezetés

abundanciája között. Mivel a csőrrel való tollászkodás a madarak tetvek elleni védelmének fontos eleme (Clayton 1991b), ez az eredmény azt sugallja, hogy a védelem mértéke befolyásolhatja a fertőzöttség egyes mérőszámait.

Jelen dolgozatban az egyes madárfajok Amblycera és Ischnocera fertőzéseinek átlagos abundanciáját és taxonómiai változatosságát elemezzük. Ezek
a mérőszámok egymástól nem teljesen függetlenek, a nagyobb fajgazdagságú fertőzések abundanciája is nagyobb (Clayton & Walther 2001).

2.6.2. Anyag és módszer

Egy-utas ANOVA-val elemezve a fajok között igen szignifikáns, konzisztens különbségeket találtunk a fiókakori sejtes immunválasz mér tékében (a varancia 63,4%-a a fajok közti variabilitásból adódik: $F = 18,55$, sz.f. = 41, 371, $P < 0,001$, Møller et al. 2003). Eszerint a sejtes sejtes immunválasz mér tékében mutatkozó változatosság zömét a fajok közti különbségek adják. Azon 18 faj esetében, ahol spanyol és dán adatokkal egyaránt rendelkezünk, szintén szignifikánsan nagyobb a fajok közti, mint alfajon belüli változatosság (a sejtes immunválasz varianciájának 82,7% a fajok közti variabilitás: egy-utas ANOVA: $F = 11,94$, sz.f. = 17, 18, $P < 0,001$, Møller et al. 2003). A fiókakat egyedfejlődésük standard szakaszában vizsgáltuk (a fiókakor 2/3-a táján), nem pedig azonos abszolút életkoruk idején. Ez biztosítja, hogy a különböző fajokra vonatkozó adataink az egyedfejlődés azonos szakaszára vonatkozzanak.

Az immunológiai válászkészség alaposabb elemzése természetesen a T- és a B-sejtes, valamint a humorális immunválasz mértekről egyaránt igényelné (National Research Council 1992), erre azonban a jelen dolgozatban alkalmazott terepmunkák során nem volt lehetőség.

A két rend átlagos abundanciája az azonos rendbe tartozó fajok egyedszámainak összegére vonatkozik. Ez a megközelítés azt jelenti, hogy az egyes rendeket külön gildeknek tekintjük, és nem az egyes fajok, hanem e gildek mennyiségeit elemezzük. Az átlagos abundancia várható értékét a mintaelemszám nem torzítja valamely irányba, de az alacsony mintaelemszám jelentősen növeli a

Szemben az átlagos abundanciával, az adott gazdafajról ismert tetvek taxonómiai változatossága a kutatottság intenzitásának is függvénye (Gregory 1990; Walther et al. 1995). Ezért megpróbáltuk becsülni az egyes madárfajok parazitológiai kutatottságának mértékét. E célból a Centre for Agriculture and Biosciences International (CABI) adatbázisban kerestünk ilyen cikkeket, melyek címe vagy absztrakta tartalmazza a gazda latin nevét és a „parasit*”, „pathogen*”, „helminth*”, „mite*”, „louse”, „lice” szavak egyikét (ahol a „*” csonkolási jel). A keresés az 1984 januárjától 2002 januárjáig terjedő időszakra korlátozódott. A találatok száma, melyet a kutatottság intenzitásának becsüléséül használtunk, gazdafajonként 0-tól 72-ig terjedt.

A tetvek abundanciájára és génusz-gazdagságára, valamint T-sejtes immunválasz a fiókakori illetve kifejlett-kori mértékére vonatkozó adatok nem minden madárfajra voltak adottak, ezért a minta-elemszám az egyes elemzéseken különböző. Az abundancia, a sejtes immunválasz, valamint a testtömeg adatokat log_{10}-transzformáltuk, illetve a kutatottság intenzitását log_{10}(x + 1)-transzformáltuk.
hogy a normális eloszlástól szignifikánsan nem különböző eloszlásokat nyerjünk. A szignifikancia szint 5%. A közölt értékek átlagok (SE).

A log-transzformált testtömeg kovariánsként való felhasználása statisztikai kontrollt biztosít a sejtes immunválasz mértéke és a testtömeg közti allometrikus összefüggésre.

Fajok közti összehasonlításban a tulajdonságok mértékei nem „független események” mert a konvergens evolúció okozta hasonlóság keveredik a filogenetikai rokonság miatti hasonlóság eseteivel. Erre való kontrollként Felsenstein (1985) munkáját követve nem a fajonkénti értékekkel, hanem a törzsfa ikerágai közti különbségekkel, a független filogenetikai kontrasztokkal számoltunk (lásd előző fejezet).

A vizsgált madárfajok rokonsági viszonyait ábrázoló törzsfát Sibley & Ahlquist (1990); Barker et al. (2001); Badyaev (1997); Blondel et al. (1996); Cibois & Pasquet (1999); Leisler et al. (1997); Martin & Clobert (1996); Møller et al. (2001); Sheldon & Winkler (1993); valamint Seibold & Helbig (1995) nyomán állítottuk össze.

2.6.3. Eredmények

Az Amblycera és Ischnocera fertőzések leíró statisztikáit az V. táblázat foglalja össze. Az Amblycera tetvek abundanciája közel háromszorosan múlt a föl említett Ischnocera fajok abundanciáját. A legtöbb madárfaj nagyon kevés tetű génuszt hordoz, a génusz-gazdagság mediánja mindkét alrendben 2. Az Amblycera és Ischnocera génuszok madárfajonkénti száma közti pozitív összefüggés volt (Pearson $r = 0,367$, $t = 3,490$, sz.f. = 78, $P = 0,0008$), amely a független filogenetikai kontrasztokat alkalmazva is szignifikáns maradt ($F = 7,422$, sz.f. = 1,77, $r^2 = 0,09$, P...
Az extrém értékek (melyek meghaladták $\pm 1,96$ szórást) kizárása sem változtatott ezen ($F = 5,144$, sz.f. = 1,72, $r^2 = 0,07$, $P = 0,03$). Az Amblycera és Ischnocera tetvek átlagos abundanciája gazdafajok között elemzve pozitív kapcsolatot mutatott (Pearson $r = 0,639$, $t = 3,811$, sz.f. = 21, $P = 0,001$; filogenetikai kontrasztok: $F = 5,564$, sz.f. = 1,21, $r^2 = 0,21$, $P = 0,03$). Az extrém értékek ($\pm 1,96$ SD) kizárása nem változtatott ezen ($F = 21,704$, sz.f. = 1,19, $r^2 = 0,53$, $P = 0,0002$).

Az Amblycera és Ischnocera génuszok száma csak gyenge összefüggést mutatott a kutatottság intenzitásával, ez a génusz-gazdagság varianciának maximum 13%-át magyarázta (Amblycera: Pearson $r = 0,354$, $t = 3,348$, sz.f. = 78, $P = 0,001$; Ischnocera: Pearson $r = 0,344$, $t = 3,238$, sz.f. = 78, $P = 0,002$).

Az Ischnocera átlagos abundancia nem függött Ischnocera génusz-gazdagság értékétől (kontrollálva a gazda testméretre, kutatottság intenzitására és a minta-elemszámra: Pearson $r = -0,085$, $t = 0,498$, sz.f. = 21, $P = 0,625$), és ezt kaptuk a filogenetikai kontrasztokat alkalmazva is ($F = 5,049$, sz.f. = 4,18, $r^2 = 0,53$, $P = 0,007$). Az Amblycera génusz-gazdagságot további változóként bevonva olyan lépésenkénti lineáris regressziós modellt kaptunk melyben mindössze a gazda testméret volt az Ischnocera abundancia szignifikáns prediktorá (9a. ábra; kontrasztokat alkalmazva: $F = 19,719$, sz.f. = 1,21, $r^2 = 0,48$, $P = 0,0002$, meredekség (S. E.) = 1,320 (0,297)). Az Amblycera fajok átlagos abundanciája nem függött össze génusz-gazdagságukkal (kontrollálva a gazda testméretre, kutatottság intenzitására és a minta-elemszámra: Pearson $r = -0,202$, $t = 1,049$, sz.f. = 21, $P = 0,308$), és ezt kaptuk a filogenetikai kontrasztokat alkalmazva is ($F = 1,993$, sz.f. = 4,18, $r^2 = 0,31$, $P = 0,139$). Az Ischnocera génusz-gazdagságot újabb változóként bevonva a modellbe olyan lineáris regressziós modellt kaptunk, melyben az Ischnocera génusz-gazdagság és a gazda testméret voltak Amblycera abundancia prediktorai (9b. ábra; kontrasztokra alapozva: $F = 4,470$, sz.f. = 5,17, $r^2 = 0,57$, $P = 0,009$, Ischnocera génusz-gazdagság: meredekség (S. E.) = -0,297 (0,093), $t = 3,204$, $P = 0,0052$; testtömeg: meredekség (S. E.) = 0,991 (0,309), $t = 3,209$, $P = 0,005$).
Az Amblycera génusz-gazdagság pozitív összefüggést mutatott a fiókakori T-sejtes immunválasz mértékével (Fig. 2a; $F = 12,364$, sz.f. = 1,56, $r^2 = 0,181$, $P = 0,0009$, meredekség (S. E.) = 1,604 (0,456)), míg az Ischnocera fajok esetén nem volt ilyen összefüggés (Fig. 2b; $F = 1,525$, sz.f. = 1,56, $r^2 = 0,027$, $P = 0,222$). Filogenetikai kontrasztokat alkalmazva hasonló eredményeket kaptunk (Amblycera, 10c. ábra; lineáris regresszió: $F = 13,296$, sz.f. = 1,55, $r^2 = 0,180$, $P = 0,0006$, meredekség (S. E.) = 2,371 (0,650)). Ez nem egyes kiugró értékek által okozott műtermék, hiszen rangskálát alkalmazva hasonló eredményt kaptunk. Az Amblycera génusz-gazdagság egy extrém értékének (10c. ábra, balra lent) kizárása csak erősíti az összefüggést ($F = 15,544$, sz.f. = 1,54, $r^2 = 0,224$, $P = 0,0002$, meredekség (S. E.) = 2,451(0,622)). Hasonlóképp, az Ischnocera génusz-gazdagság és a fiókakori T-sejtes immunválasz közti szignifikáns kapcsolat hiányát megerősítette a lineáris kontrasztokra alapozott elemzés is (10d. ábra; lineáris regresszió az origón át: $F = 0,013$, sz.f. = 1,55, $r^2 = 0,000$, $P = 0,910$).
10. ábra. Az Amblycera (a) és az Ischnocera (b) génusz-gazdagság a gazdafaj fiókakori T-sejtes immunválaszának (mm) függvényében. Filogenetikai kontrasztok ugyanezen tulajdonságokra az Amblycera (c) és az Ischnocera (d) fajok estében. Az x tengelyeken logaritmizált értékek.

A tulajdonságok kontrasztjaira alapozott többszörös lineáris regressziós modellbe a kutatottság mértékét, az immunválasz adatok eredetét (vadon vagy fogságban élő madarakon mért adatok), és a gazdafaj testtömegét is bevettük további változóknak. Az Amblycera fertőzések esetében a génusz-gazdagság modellje szignifikáns ($F = 9,783, \text{sz.f.} = 3,57, r^2 = 0,340, P < 0,0001$). Az Amblycera génusz-gazdagság szignifikáns pozitív kapcsolatot mutatott a fiókakori T-sejtes immunválasszal (meredekség (S. E.) = 1,153 (0,490), $t = 2,352, P = 0,02$). Hasonlóképp az Ischnocera génusz-gazdagság teljes többszörös regressziós
modellje is szignifikáns \((F = 4,916, \text{sz.f.} = 3,57, r^2 = 0,206, P = 0,004)\), csakhogy a génusz-gazdagság nincs szignifikáns kapcsolatban a T-sejtes immunválasszal (meredekség (S. E.) = 0,449 (0,410), \(t = 1,093, P = 0,279\)). Az Amblycera fertőzések génusz-gazdagsága tehát nő a fiókakori T-sejtes immunválasz mértékével, míg az Ischnocera fertőzések esetében nincs ilyen összefüggés.

Habár a fiókakori és a kifejlett-kori T-sejtes immunválasz mértéke pozitív összefüggést mutatott (Pearson \(r = 0,595, t = 4,059, \text{sz.f.} = 30, P = 0,003\)), a kor-specifikus különbségek hatásának tisztázására többszörös lineáris regressziós modelleket alkottunk a génusz-gazdagság (mint függő változó) valamint a fiókakori és a kifejlettkti T-sejtes immunválasz (mint független változók) filogenetikai kontrasztjai között. Az Amblycera fertőzések esetére a teljes regressziós modell statisztikailag szignifikáns (lineáris regresszió az origón keresztül: \(F = 5,535, \text{sz.f.} = 4,40, r^2 = 0,352, P = 0,001\)). Az Amblycera génusz-gazdagság szignifikáns pozitív kapcsolatot mutatott a fiókakori T-sejtes immunválasszal (10c. ábra; meredekség (S. E.) = 1,211 (0,618), \(t = 1,997, P = 0,04\)), míg a kifejlett-kori immunválasszal való kapcsolatára nem volt szignifikáns (meredekség (S. E.) = -0,724 (0,803), \(t = 0,901, P = 0,373\)). E kapcsolatot nem egyes kiugró extrém értékek hozták létre, hiszen rangskálát alkalmazva nagyon hasonló eredményt kaptunk. A génusz-gazdagság extrém kiugró értékek kizárása nem befolyásolja a kapcsolatot (\(F = 3,010, \text{sz.f.} = 4,39, r^2 = 0,236, P = 0,003\)). Az Ischnocera fertőzések esetében a génusz-gazdagság nem mutatott kapcsolatot a fiókakori T-sejtes immunválasszal (meredekség (S. E.) = -0,172 (0,450), \(t = 0,383, P = 0,704\)), illetve az kifejlett-kori T-sejtes immunválasszal sem (meredekség (S. E.) = 0,323 (0,578), \(t = 0,559, P = 0,612\)). Az Amblycera fertőzések génusz-gazdagsága és az immunválasz-készség közti kapcsolat tehát csak a fiókakori immunválasz értékek esetében kimutatható, míg az Ischnocera fertőzések gazdagsága a madár egyik életkorában mért immunológiai válaszkészségével sem függött össze.

2.6.4. Megbeszélés
A vizsgált madárfajokat filogenetikai törzsfa mentén ábrázolva azt kaptuk, hogy az Amblycera fertőzések génusz-gazdagsága a fiókakori T-sejtes immunválassz készségének növekedésével összerendezett módon változik. Az Ischnocera fertőzések esetén nem volt ilyen tendencia. Legjobb tudásunk szerint ez az első olyan eredmény, amely kapcsolatot mutat a madarak Amblycera fertőzései és az
immunrendszerük működésének intenzitása között. Mindez azt sugallja, hogy a madarak immunvédelem által (is) korlátozzák Amblycera fertőzéseiket. Szintén ez az első olyan eredmény, mely kapcsolatot mutat egy élősködő csoport taxonómiai változatosságára és a gazda védekezésének intenzitása között. Vizsgálatunkban az Ischnocera tetvek egyfajta természetes kontrollopcsoportként szolgáltak, mert ennek fajai jellemzően nem érintkeznek a gazda élő szöveteivel. Ezért, amint az várható is volt, esetükben nem találtunk a génusz-gazdagság és a T-sejtes immunválasz mértéke közti kapcsolatra utaló jeleket. Feltételezhetjük, hogy az Amblycera génusz-gazdagság és a gazda T-sejtes immunválasz közti kapcsolat közvetlen kölcsönhatás terméke, és nem valamely általunk nem vizsgált tényező által közvetített hatás (műtermék). Ebben az esetben az ok-okozati kapcsolatnak kétféle iránya képzelhető el. Lehetséges, hogy a nagy génusz-gazdagság a gazdafajokat a T-sejtes immunválasz mértékének növelésére szelektálja. Csakhogy egy ellentétes irányú kapcsolat is lehetséges, vagyis, hogy a gazda magasabb immunológiai válaszkészsége Amblycera tetveket fokozottabb specializációra szelektálja, amely végső soron fokozottabb fajképződéshez vezet. Ebben az esetben a gazdafajokat a hevesebb immunválasz képességére a vizsgálatunkban nem szereplő, más, a tetveknél virulensebb kórokozók által kifejlett szelektáns nyomás kényszeríti, majd ennek hatására nő az Amblycera génusz-gazdagság is. Az ok-okozati kapcsolatok ellentétes irányát jelző hipotézisek nem egymást kizáró jellegűek, párhuzamosan is megvalósulhatnak. Eredményeink azonban nem nyújtanak támponot arra, hogy az oksági kapcsolat irányát elemezzük. Feltételezzük azonban, hogy az Amblycera tetvek általi szelektáns nyomásnál sokkal jelentősebb szelektáns erők formálják a madarak immunrendszerének evolúcióját, és csak ezt követi az Amblycera tetvek fajképződési mintázatának alakulása.

A madárfajok testtömege és a tetvességük abundanciája közti összefüggés (filogenetikai kontroll után) már eddig is ismert volt (Rózsa 1997a). Jelen vizsgálat megmutatta, hogy ez az összefüggés az Amblycera és Ischnocera alrendeket külön vizsgálva is mindkét alrend esetében fennáll.

Korábbról már ismert volt, hogy a madarak tetveinek abundanciája és taxonómiai gazdagsága pozitív kapcsolatot mutat (Clayton & Walther 2001). Jelen eredményeink pontosítják ezt a képet, amennyiben azt sugallják, hogy a kapcsolat konkrétan az Amblycera abundancia és az Ischnocera taxonómiai gazdagság közti összefüggésre vezethető vissza. E jelenség okait még nem ismerjük. Mindezt mégis rávilágít egy általánosabb problémára, arra, hogy a tető-együtt esek ökológiai jellemzőit leíró vizsgálatok során gyakran túlzott leegyszerűsítést teszünk, mikor minden tetőfajt egyetlen, egységes guild szereplőjének tekintünk (mint pl. az értekezés 2.5. fejezetében).

A korábbi kísérletes vizsgálatok ismételten azt mutatták, hogy a madarak tetvességük mértékét mechanikai védekezési módokkal, főként tollászkodással és vakaródzással csökkentik (pl. Clayton 1991b; Rózsa 1993b; Clayton et al. 1999). Miközben nem kétséges, hogy a mechanikai védelem az Amblycera fajokra is hat, felhívjuk a figyelmet arra, hogy ezek a kísérletek mind Ischnocera tetvekkel folytak, és nem világos, hogy eredményeik milyen mértékben vonatkoztathatók más tetvekre is. Eredményeink szerint az Amblycera tetvek a gazda egy másik védelmi rendszerével, az immunrendszerrel is koevolválnak.
2.7. Hajtétű (*Pediculus humanus capitis*) ivararányok elemzése\(^{11}\)

A varjak tolltetveinek elemzése is rámutatott arra, hogy a tetvek valószínűleg képesek utódaik ivararányát a fertőzöttség intenzitásának függvényében manipulálni. E jelenség hátterének megértése azért is lényeges volna, mert a parazita népesség ivararánya nyilvánvalóan befolyásolja a parazita szaporodási rátát, és ezen keresztül a virulencia mértékét is (Ewald 1994; 1995). Buxton 1941-ben publikált adatait elemezve úgy tűnik, hogy az emberi hajtetvek (*Pediculus humanus capitis*) is képesek utódaik ivararányát az intenzitás függvényében manipulálni. Legalábbis erre utal, hogy az ivararányt az intenzitás értéke az LMC hipotézis által megjósolt módon prediktálja.

Figyelemre méltó körülmény azonban, hogy a Buxton (1941) által közölt hat trópusi mintából csak egy, a Colombo-ban gyűjtött minta mutatott ilyen mintázatot. Ennek okát nem ismerjük. Elképzelhető, hogy a colomboi mintában szereplő emberek egymástól izoláltabbak voltak, min a többi mintában, mert ezt az egy mintát börtönben gyűjtötték férfi foglyokról.

11. ábra. 1935-ben a colomboi börtönben a hajtetvek ivararánya az intenzitástól függött. A fertőzött rabok (125 fő) adatait fertőzöttségi osztályokba rendezzük (intenzitás 1-2, 3-10, 11-25, 26-100, >100), és ezek ivararánya intenzitás-függő (lineáris regresszió, r=0,970, F=48,2, P<0,007, szignifikáns a Bonferroni-korrekción után). Zárójelben az osztályba sorolt tetvek egyedszáma.

2.8. Ivari szelekció tasakospatkány-szőrtetvekben12

2.8.1. Bevezetés

A „szabadon élő” (nem-élősködő) lényekben az ivaros szaporodás valószínűleg a parazita-fertőzések elleni adaptációként jött létre, és vált általánosan elterjedtő (Hamilton 1980; Hamilton \textit{et al.} 1990), csakhogy a parazíták többnyire maguk is ivarosan szaporodnak. Az ivaros szaporodás – ha a párválasztást befolyásolják a potenciális nemi partnerek eltérő genotípusai – ivari szelekcióhoz vezet. Míg az ivari szelekció a szabadon élő lények mikroevolúciójában és fajképződésében közismerten jelentős hatóértékre (Anderson 1994), és a patogének befolyását a gazda ivari szelekcióira kiterjedten tanulmányozták az elmúlt évtizedekben, addig a parazitákon belüli ivari szelekció eddig jórészt elkerülte a kutatók figyelmét. Jelenleg nincs egyszerű módszer annak tanulmányozására, hogy az ivari szelekció és a nemi preferenciák hogyan befolyásolják a parazíták és patogének egyes genetikai álléléinek relatív szaporodási sikerét. Közvetett lehetőséget kínál az ivari szelekció intenzitásának mérésére a genitáliák és a másodlagos nemi szervek morfológiájának összehasonlítása sok, közel rokon élősködő faj között. Feltételezzük, hogy az ivari szelekció szintjének növekedésével arányosan nő az ivarszervek fejlesztésébe allokált erőforrások aránya, különösen a versengő nemben, ami rendszerint a hím. A tetvek, mint a rovarok legnagyobb permanens élősködő csoportja, kivételes lehetőséget nyújtanak e vizsgálatokra. Mint minden rovarnak, a tetveknek is morfológiaiag és funkcionálisan jól elkülönült testekre tagolt teste van, ezért az ivarszervek relatív mérete jobban mérhető, mint bármely nem-izeltlábú kórokozó esetében.

A nőstény tetvek életük során gyakran többször is párzanak, és képesek spermát tárolni ivarszervükben, ezért a hímek között valószínűleg jelentős a spermakompetitció. A nagyobb testű hímek, vagy a nagyobb és komplexebb nemi szervekkel bíró hímek több spermát képesek termelni, és így mennyiségileg „kihíjtják” versenytársaiak spermáját, ezáltal eredményesebbek az ivari versengésben. A fonalscsápú tetvek alrendjében (Ischnocera) a hímek csápja gyakran megnyobbodik, a hím ezzel rögzíti a nőstény torát párzás közben. A relatíve nagyobb

és komplexebb csápú hímek vélhetően hosszabb ideig képesek tartani a nőstényt, megakadályozva ezzel azt, hogy közvetlenül a párház után a nőstény egy másik hímmel újra közösüljön. Végül feltételezzük, hogy a spermakompetíció magasabb szintjével együtt jár a nőstény genitália méretének és komplexitásának növekedése is, hiszen ez az a tény, melyben a spermakompetíció fizikailag lezajlik.

A spermakompetíció mértékére természetesen hatással van az ivararány. A nem-egyensúlyi ivararányok gyakoriak a tetvek körében, ennek oka valószínűleg a lokális ivari versengés (Clayton et al. 1992; az értekezés 2.3. és 2.7. fejezetei). E jelenség akkor lép fel, ha a populáció időlegesen feltagolódik sok kis szubpopulációra, melyben a beltenyésztés jelentős (Hamilton 1967). Mivel a tetvek több generációváltása is egyetlen gazdaegyeden zajlik, e népességek ideiglenesen izoláltak lehetnek a többi gazdaegyed tetveitől. Ilyen körülmények közt egy nőstény az által maximalizálhatja unokái számát, ha utódai közt csökkenti a versengő ivar (ez rendszerint a hím) arányát, ezáltal csökkenti a saját utódai közti versengést. Másrészt viszont a nem-rokon genotípusokkal való keveredés esetén előnyösebb a megszerezhető erőforrások felét a versengő ivar létrehozására fordítani (Fisher 1930).

E dolgozat célja az ivarilag szelektált morfológiai bélyegek és az ivararány számszerűsítése a tetvek egy fajgazdag csoportjában, hogy felderítsük a parazita ivari szelekciónak kapcsolatát a földrajzi elterjedéssel, fajképződéssel, és a virulencia egyes faktoraival. E célból (al-)fajok közti összehasonlításban elemeztük (1) az ivari versengéssel kapcsolatos bélyegek kapcsolatát az ivararánnal (2) egyes „környezeti tényezők” (mint pl. a biogeográfiai pozíció és a fertőzés intenzitása) kapcsolatát az ivari versengéssel, és végül (3) eredményeinket megpróbáljuk értelmezni a fajképződéssel és a virulencia evolúciójával kapcsolatban is.

2.8.2. Morfológiai elemzés

A taxonómiai leírások adataiból az alábbi mérőszámokat generáltuk:

1. Ivararány. A hímek aránya a minta összes kifejlett példánya között. A háttérzaj csökkentése érdekében kizártunk minden fajt vagy alfajt, melyet kevesebb, mint 25 egyed képviselt, vagy kevesebb, mint 5 gazdaegyedről gyűjtötték. Hasonlóképp, kizártuk a parthenogenetikus törzseket (ivararány < 0,05), mint extrém szélső értéket mutató csoportokat. Ezek a döntések minőségileg nem befolyásolják a végeredményt. Az elemzésben maradt törzsek ivararánya 0,34-0,79 közt változik.

2. Ivari testméret dimorfizmus. A testhosszat log-transzformáltuk, majd a hím testméretet a nőstäny testméret lineáris függvényeként fejeztük ki. Az ivari dimorfizmus mértéke a hím testméret eltérése (reziduálisa) e regressziós egyenestől (Ranta et al. 1984).

3. Nőstäny genitália mérete. A nőstäny genitália-zsák hossza osztva a nőstäny testhosszal. Diszkrét karakter-állapotok: \(<=0,09\) (1); 0,09-0,12 (2); 0,12+ (3).

13 A törzs az élősködő fajon belüli egység, mely eltérő járványtani tulajdonságokkal (pl. gazda-specifiással) jellemezhető populációt jelöl.
4. Hím genitália mérete. A hím genitália szélessége osztva a fej szélességével. Diszkrét karakter-állapotok: <=0,19 (1); 0,19-0,24 (2); 0,24-0,31 (3); 0,31+ (4).

6. A nőstény genitália strukturális komplexitása. A „strukturális komplexitás” terminust mindvégig egyszerű értelemben használjuk, pusztán a taxonómiai leírásokban elkövetett objektumként leírt és megszámlált testalkotók mennyiségét értjük alatta. A nőstény genitália zsákban „hurok” nevű, ismeretlen funkciójú struktúrák láthatók, ezek számát tekintjük így a komplexitás mértékének. Diszkrét karakter-állapotok: nincs (0); 1-2 (1); 3-5 (2); 6-9 (3); 10-11 (4).

7. A hím genitália strukturális komplexitása. A hím genitália-zsákban látható, ismeretlen funkciójú „tüskék” száma. Diszkrét karakter-állapotok: nincs (0); 2 (1); 3 (2); 4 (3); 5 (4); 6 (5); 8+ (6).

8. Hím fogószerv strukturális komplexitása. A csáp első ízén sokszor egy jól elkülönült oldalág is van, ennek jelenléét a nagyobb komplexitás jeleként értelmezzük. Diszkrét karakter-állapotok: egyenes csápíz (0); enyhe kitüremkedés (1); határozott oldalág (2).

9. Átlagos intenzitás. A parazita egyedszáma osztva a gazda egyedszámmal, log-transzformálva. Mivel a tetvek nagy részét múzeumokban, korábban más célok ból gyűjtött és preparált tastakospatkányokról gyűjtötték, ezért az intenzitás adatokban nyilvánvalóan nagy a véletlen zaj. Roger D. Price (aki az összes felhasznált fajleírásban társszerző) egy magánlevélben írta le a gyűjtési eljárást:

„Semmi képpen sem törekedünk a kvantitatív gyűjtésre. Ha a tasakospatkány bőrön sok tető volt, addig fésültem, amíg összegyűlt egy „szép” minta. Ha a bőrön csak kevés tető volt, akkor egy alaposabb keresést végeztem, amíg meg nem győzőtem arról, hogy minden kifésülhető példányt megtaláltam. Ezért fenntartásaim volnának azzal kapcsolatban, hogy ezeket a számokat a tetvek populációméretének tekintsük. Sok függ a bőrök előzetes történetétől...” Mégis, mivel az átlagos intenzitás eléggé változékony (2,3-31,3 között), és a gazdaegyedek száma igen nagy (3.574), fennáll annak a lehetősége, hogy az adatok a véletlen zajon kívül információt is hordoznak.

Elemzéseinkben a parazita fajok vagy alfajok tulajdonságait statisztikailag független „eseményeknek” tekintjük. Filogenetikai kontrollt tehát egyelőre nem végeztünk, mert a szükséges törzsfák a mai napig nem állnak rendelkezésre. A korábbi kladisztikai elemzésből (Page et al. 1995) azonban tudjuk, hogy e tételek valószínűsítethető, hogy a filogenetikai kontroll eredménye nem különbözné jelentősen az itt bemutatott eredményektől. Úgyanakkor e kladisztikai vizsgálat eredményeként kapott kladogram nem használható törzsfaként a mi céljainkra, hiszen nem rendelkezik a mi céljainkra, hiszen az részben az általunk itt elemzett tulajdonságok alapján készült.

Mivel a változóink többsége kategóriált jellegű, az egyszerűség kedvéért minden számításban nem-parametrikus teszteket alkalmazunk. A statisztikai teszek kétoldalasak.

2.8.3. Eredmények

Az ívararány minden általunk vizsgált morfológiai tulajdonsággal a hipotézisünk által jósolt irányú korrelációt mutat, vagyis a hímek nagyobb aránya rendszerint együtt jár az ívari versengés nagyobb szintjét jelző bélyegekkel, és e korrelációk többsége szignifikáns. Az átlagos intenzitás – pontosabban ennek egy igen durva becsülése – korrelál az ívararánynal és az ívari versengés szintjét jelző morfológiai bélyegekkel. E korrelációk iránya szintén megfelel a hipotézis által prediktált iránnyal, tehát a magasabb intenzitás rendszerint együtt jár a hímek magasabb arányával és az ívari versengés magasabb szintjét jelző bélyegekkel. Ez utóbbi korreláció fele tekinthető szignifikánsnak (VI. táblázat).

Korábbi munkákból ismert, hogy olykor egyes járványtani mutatók – mint pl. a prevalencia (Read et al. 1995a; 1995b; Poulin 1997a), az átlagos intenzitás (Rózsa 1997c) és a gazda szocialitásának mértéke (Rózsa et al. 1996) – korrelálnak a
paraziták ivararányával. Az ivararány korrelál az ivari testméret dimorfizmussal az elősködő fonálféreg esetében (Poulin 1997b), és az ivari testméret dimorfizmust használták már az ivari szelekció mértékeként pl. a buzogányfejűek esetében (Poulin & Morand 2000). Mindezeket az eredményeket szerzőik a parazita népességen belüli ivari versengéssel összefüggésben értelmezték. Jelen dolgozatunk azonban a tulajdonságok sokkal nagyobb körére terjed ki. Egyrészt a közélo-rokon parazita (al-) fajok összehasonlításával megmutattuk, hogy az ivararány pozitívan korrelál a hím relatív testmérettel, valamint a nőstény genitália, a hím genitália, valamint a hím másodlagos nemi szerv relatiif méretével és komplexításával. Másrészt az intenzitás durva becsülése pozitívan korrelál az ivaráránnyal és az előbb említett morfológiai bélyegekkel. Feltételezzük, hogy a belenyésztsés erőteljesebb az alacsony intenzitási értékek estén, és ezért várható, hogy a magasabb intenzitás együtt járjon az erőteljesebb hím-hím versengéssel. E korrelációk nagy része a Bonferroni-korrekción után is szignifikáns, íranyuk pedig megegyezik a spermakompetíció feltételezése alapján megjósolt iránnyal.

Az eredmények alternatív értelmezési módja mintavételi hibát feltételezni. Az ivari testméret dimorfizmus és az ivararány közti így pozitív korreláció várható, hiszen a tetvek igen apró állatok, és könnyű a relatíve kisebb nemhez tartozó példányokat elveszíteni. Mivel az ivari testméret dimorfizmus és a többi morfológiai tulajdonság közti pozitív korreláció van (ezeket itt nem mutattuk be), a mintavételi hiba megmagyarázhatja az ivararány és a morfológiai karakterek közti korrelációkat is.

2.8.3. Biogeográfiai vonatkozások
Az alternatív hipotézisek (ivari szelekció versus mintavételi hiba) tesztelése céljából megvizsgáltuk az ivararány biogeográfiai változékonyságát. Ha az ivararányok csak a dimorfizmus véletlen különbségeit tükrözik, akkor nem várható, hogy földrajzilag meghatározható trendeket mutassanak. Ezzel szemben, ha az ivari szelekció szintjeit tükrözik, akkor várhatóan biogeográfiai lag értelmezhető mintázatot is mutatnak. Ez az elemzésünk csak Kanada, az USA és Mexikó területére vonatkozott, néhány kisebb közép-amerikai mintát kihagyunk. Az alapadatokat Kanada, az USA, és Mexikó tagállamaira tudtuk vonatkoztatni, ennél finomabb térbeli felbontás az adatközlés hiányosságai miatt egyelőre nem végezhető.

A biogeográfiai adatok nem támogatják a mintavételi hiba hipotézist, mivel az ivararány adatok határozott geográfiai trendet mutatnak. A nőstény-túlsúlyú, és
különösen a parthenogenetikus törzsek az elterjedési perifériákon, míg a hím-túlsúlyú törzsek a Sziklás Hegység vonulatában jellemzőek. A fent leírt korrelációkat tehát nem magyarázhatjuk mintavételi hibával. Ezért úgy véljük, hogy a spermakompetíció egy jelentős, de földrajzilag változó mértékű hatóerő a tasakospatkány szörtetvek morfológiai és ivararány-evolúciójában. Ez természetesen nem zárja ki annak lehetőségét, hogy ezzel párhuzamosan mintavételi hiba is befolyásolhatta az ivararány adatainkat.

13. ábra. Tasakospatkány szörtetű törzsek ivararányainak átlagai tagállamonként átlagolva. Minden törzset egyenlő súlyal vettünk figyelembe, ha azt összesen legalább 25 parazita és legalább 5 gazdaegyed képviselte, és előfordult az adott tagállamban (is). A parthenogenetikus törzsek adatait kihagytuk a számításból, de előfordulási helyeiket csillagokkal jeleztük.
Az egyes tagállamok jellemezhetők az ott előforduló parazita törzsek számának, és az adott állam területének hányadosával: ez egyfajta epidemiológiai diverzitás mérőszám. Az egyes tagállamokat elemi eseményként kezelve szignifikáns pozitív korreláció mutatható ki a törzsek sűrűsége és a törzsek ivararányának átlaga között: tehát a hím-túlsúlyú ivararányok főként a nagy törzs-sűrűséget mutató, központi helyzetű Sziklás Hegységben jellemzőek.

Másrészt lehetséges, hogy egyes területek magas fajképződési ráta jól fokozza az ivari szelekciót. A fajképződés folyamatának fontos bevezető szakasza, hogy az azonos fajú populációk genetikai eltérései fokozatosan növekednek, ezért – mielőtt a teljes genetikai izoláció létrejönne – a többszörös fertőzések nagyon különböző
génálományú paraziták hibridizációját teszik lehetővé, ami kedvez az ivarilag
versengő hím utódok létrehozásának. E hatás kevésbé kifejezett ott, ahol a térben
szomszédos parazita populációk genetikailag is hasonlóak.

E két hipotézis egymást nem kizáró jellegű, mindkét folyamat működhet
párhuzamban is. Olyan földrjazi területeken, amely elősegíti a tasakospatkányok és
parazitáik gyors fajképződését, e két folyamat talán egy autokatalitikus folyamattá
kapcsolódnak össze.

Ezzel kapcsolatos egy további alternatív hipotézisünk is. Elképzelhető, hogy a
földrjazi meghatározottság közvetlenül csak a gazdafajok evolúciója hat, és a
gazdafajok egyes tulajdonságai – mint pl. testméret, vagy élettartam – hatnak a
parazita ivarosság evolúciójára. Ebben az esetben a földrjazi elterjedés és a parazita
ivari stratégia között csak közvetett kapcsolat van. E hipotézis tesztelehető, mert van
ey egy nyilvánvaló predikciója. Ha A parazita taxon két törzse az 1 és 2 gazda
taxonon fordul elő, akkor a kétféle gazdán mutatott ivararányainak különbsége
várhatóan korrelál azon B parazita taxon törzsei közti ivararány különbséggel, mely
szintén az 1 és 2 gazda taxonon fordul elő. Magyarázat szerint az egyik parazita faj

15. ábra. Sok tetű taxon többféle gazdán is előfordul, és megfordítva, egyes gazda
taxonon többféle tetű is előfordul. Ha a gazda tulajdonságai határoznák meg a parazita
ivararányokat, akkor várható, hogy A parazita 1 és 2 gazdán mutatott ivararányainak
különbsége (vízszintes tengely) pozitív korrelációt mutasson B parazita 1 és 2 gazdán
mutatott ivararányainak különbségeivel (függőleges tengely). Ez azonban nem jelenik meg
sem a törzsek szintjén (balra), sem pedig a helyi populációk szintjén (jobbra), ezért ezt a
hipotézist elvetjük.
várhatóan ugyanazt a különbséget „látja” két gazda-taxon között, mint a másik. Ezt az elemzést a helyi populációk szintjén, és a törzsek szintjén is elvégeztük. Az adatok egyik szinten sem támasztják alá ezt a hipotézist.

2.8.4. Értékelés

Úgy véljük tehát, hogy egyes parazitákban az ivari szelekció hatékonyan befolyásolhatja a morfológia és az iivararányok evolúcióját, valamint a fajképződés mértékét is.

Az eredmények a virulencia evolúciójának szempontjából és érdekeseek. Evolúciós-ökológiai szempontból definiálva a virulencia a parazita képessége a gazda túlélési és szaporodási sikerének csökkentésére. A gazdaegyeden élő parazita népesség szaporodási rátája alapvetően befolyásolja a virulenciát (Ewald 1994; 1995; vanBaalen et al. 1995). Eredményeink azt sugallják, hogy az elterjedési perifériákon a nőstények aránya igen magas, itt tehát a parazita születési ráta nyilván magasabb, mint az área-központban, ahol a nőstények aránya jóval kisebb. Ezzel szemben az área-központban vélhetően nagyobb az utódok genetikai variabilitása, hiszen itt nincs parthenogenetikus szaporodás, és a beltenyésztés mértéke is alacsonyabb. Ezért feltételezhető, hogy itt jobb az utódok minősége; alacsonyabb a parazita mortalitás. És valóban, a parazíták magasabb intenzitású fertőzéseket hoznak létre az área-központban, mint a perifériákon. Éppúgy, mint a szabadon élő lényekre kidolgozott, klasszikus r-K kontinuum hipotézis esetében, a parazíták is több utódot hoznak létre az área perifériáin és jobb utódokat a központokban. A parazita születési és túlélési ráta a parazita virulencia két fontos faktora, melyek közé eredményeink negatív cserearányt sejtetnek. Az área más és más részein e cserearány más és más mértéke az optimális a tasakospatkány szörtetvek, de talán más élősködők esetében is.
2.9. Irodalom

Phthiraptera, Pediculidae): evidence from double infestations. *Heredity*, 95, 34-40

inferred from cladistic analysis of adult and first instar morphology. Systematic Entomology, 20, 129-143.

3. Metodikai fejlesztések

3.1. Parazitás fertőzések kvantitatív elemzése

3.1.1. Bevezetés

Az alábbiakban a gazdákról gyűjthető egyetlen parazitafaj előfordulásának mennyiségi jellemzését tárgyaljuk. Több parazitafaj előfordulásának együttes jellemzése további problémákat vetne fel.

Aki nemcsak a fertőzött egyedek gazdajuházának belüli arányára, hanem a paraziták mennyiségére is kívánca, az intenzitás vagy abundancia értékeket számol. Az előbbi a fertőzött gazdadagan belüli azonos fajú paraziták egyedszáma, míg az utóbbi bármely (akár nem-fertőzött) gazda-populációban élő azonos fajú paraziták egyedszáma (intenzitás > 0 és abundancia ≥ 0). A parazita ökológiai terminológiai alapjait megalapozni hivatott alapján a fertőzés jellemzésére az átlagos intenzitás vagy az átlagos abundancia (aritmetikai átlag) használható (Margolis et al. 1982; Papp 1987; Bush et al. 1997).

Az átlagos intenzitás vagy az átlagos abundancia minták közti összehasonlítására parametrikus teszteket (Student t-ttesztet vagy ANOVA-t) használhatnánk, csakhogy a parazita populációk erősen aggregált eloszlást mutatnak (Crofton 1971), e tesztek előfeltételei tehát nem teljesülnek. Ezért a parazitológusok gyakran nem-parametrikus próbákat, pl. Mann-Whitney U-ttesztet vagy Kruskal-Wallis tesztet alkalmaznak. Ezek ún. „eloszlás-független” tesztek, csakhogy nem az átlagot hasonlítják össze, hanem a mediáント, bár azt is csak akkor, ha speciális feltételek teljesülnek. A parazitológusok tehát terminológiai ajánlásokat

követve az átlagos intenzitásról (abundanciáról) írnak, miközben a medián intenzitásokat (abundanciákat) elemzik. Lássuk az alábbi hipotetikus példát:

A mintában: 1, 1, 1, 1, 1, 1, 1, 1, 2, 50;
B mintában: 1, 1, 2, 2, 2, 2, 3, 3, 4, 10.

Ebben az esetben az intenzitás átlaga A mintában nagyobb, mint B-ben (átlagok: 6, 3), míg egy Mann-Whitney U-teszt látszólag megmutatja, hogy az intenzitás mediánja (mediánok: 1, 2) szignifikánsan alacsonyabb A mintában mint B-ben.

De ez is csak egy félrevezető látszat. Valójában a Mann-Whitney U-teszt csak akkor tájékoztat a mediánok eltéréséről, ha teljesül speciális feltétele, a gyakorisági eloszlások azonos alakja. Ilyenkor lényegében azt vizsgáljuk, hogy az azonos alakú eloszlások egymáshoz képest eltolt helyzetben vannak-e a számegegyenesen. Ha ez a feltétel nem teljesül, akkor a teszt nem az eloszlások mediánjait, hanem csak a rangösszegeit hasonlítja össze. A rangösszegek viszont szokatlanul viselkedhetnek. Vegyük az alábbi hipotetikus mintákat:

A minta: 2, 3, 9,
B minta: 4, 5, 7,
C minta: 1, 6, 8.

A rangösszegeket elemezve meglepve tapasztaljuk, hogy:

A < B < C < A

Nagyobb minták esetén ez a körkörös viszony csupa szignifikáns különbséget is takarhat.

Elterjedt parazitológiai gyakorlat tehát az átlagokról beszélni, látszólag a mediánokat összehasonlítani, valójában pedig a rangösszegeket elemezni, amelyek fenti meglepő viselkedési sajátsága (a körkörös alárendeltség lehetősége) a szerzők és az olvasók számára egyaránt ismeretlennek.

Gyakran felmerülő alternatíva az adatok logX – vagy log(X+1) – transzformálása, hogy azok normális eloszlást mutassanak. Ezután parametrikus tesztek alkalmazhatók a transzformált adatokon. Ilyenkor az elemzés a geometriai átlagra (ez a log-transzformált adatok átlágának az eredeti skálára visszatranszformált értéke) vonatkozik. Csakhogy az erősen aggregált parazita eloszlások rendszerint a transzformáció után is aggregáltak maradnak – amit sok szerző nem ellenőriz – és ekkor a parametrikus tesztek alkalmazása továbbra sem megalapozott.

Mit tegyünk tehát, ha a fertőzöttség mértékét akarjuk leírni egy mintára vonatkozóan, vagy összehasonlítani több minta között? Jelen fejezet e kérdésre

3.1.2. Az egyes mérőszámok tulajdonságai és interpretációja
A fenti okfejtés rejtett buktatója, hogy a szerzők az alapján választották ki a minták jellemzésére alkalmazott indexeket (pl. medián, geometriai átlag), hogy milyen statisztikai teszteket tudnak alkalmazni az elterjedt statisztikai programcsomagok segítségével. Csakhogy a matematikai statisztika sokat fejlődött a közelmúltban – elsősorban a számítógép-intenzív eljárások terjedése folytán – és ezért ma sokkal szabadabb döntési lehetőségeink vannak.

Célszerű tehát előbb átgondolni az egyes mérőszámok (indexek, leíró statisztikák) biológiai jelentését, interpretációját, figyelembe venni az egyes indexek alapvető tulajdonságait, és ezek alapján kiválasztani az elemzésre kerülő indexeket. Ha ez megtörtént, csak azután kell kiválasztani az adott index elemzésére legalkalmasabb statisztikai eljárást.

Egyetlen minta fertőzöttségének jellemzésekor nyilvánvalóan meg kell adnunk a gazda egyedszámot (N) és a prevalenciát (%). Ezután több lehetőségünk nyilik a fertőzöttség mértékének jellemzésére: átlagos intenzitás, átlagos abundancia, medián intenzitás, medián abundancia, intenzitás geometriai átlaga és az abundancia geometriai átlaga. A szakirodalomban körülnézve azt tapasztaljuk, hogy mindegyik index használható, és nagyrészt a szokásjog dönti el, hogy ki melyiket választja. A legtöbb szerző az átlagos intenzitás ±szórás értékeket adja meg. De mit is jelent pl. az az állítás, hogy „a fertőzöttség átlaga= 5 ± 10” ? Azt jelenti, hogy a fertőzöttség negatív érték is lehet? Ez nem mondvacsinált probléma, hanem a parazitológiai publikációkban igen adatközlési mód.15

Általában kedvező intenzitást választani az abundancia helyett. A minta nem-fertőzött hányadát már jellemeztük a prevalencia közlésekor. Ezután az intenzitás egy indexének megadása a prevalenciától független információt közöl. Ezzel szemben az abundancia valamely indexe a prevalenciával részben átfedő

15 Az ISI Web of Science-ben a (parasit* and intensity and SD) kulcsszavakra keresve könnyen gyűjthető egy-két tucatnyi olyan dolgozat, mely a absztraktban megadja a mean intensity ± SD értékeket. Azonban jóval több dolgozat csak a cikk szövegében közli ezeket. Ez az adatközlési mód nem kizárólag a régi cikkekben fordul elő, a 2000-es években is gyakori.
információt közöl. A sok zéró érték miatt ráadásul az abundancia értéke aggregáltabb, és statisztikailag nehezebben kezelhető (pl. tágabb a konfidencia intervalluma).

Ezzel szemben a mediánok használata esetén indokolt lehet a medián intenzitást és medián abundanciát egyaránt megadni, mivel egyik a másikból nem számítható. Mind a medián intenzitás, mind pedig a medián abundancia várható értékét befolyásolja a mintaelemszám (Gregory & Woolhouse 1993; Fulford 1994). Pl. ha a prevalencia kisebb 50%-nál, akkor a medián abundancia értéke definíció szerint nulla. A medián intenzitás és medián abundancia tehát a prevalenciával részben (néha egészben) átfedő információt hordoz. A medián értékek használatának előnye, hogy nem függene az extrém szélsőértékek a geometriai átlag

16 Így pl. a Rékási József által 39 fertőzött tőkésrecéről gyűjtött mintegy 2700 Anaticola crassicornis tolltetű 88%-a egyetlen gazdaegyedről származott. Nyilvánvaló, hogy a fertőzöttség (abundancia vagy intenzitás) átlaga elsősorban attól függ, hogy a nagyon ritka nagyon fertőzött példányok éppen belekerülnek-e a mintába sem. Az értékek tehát alig közölnének információt a minta egészéről.

Természetesen az adatközlés legelőnyösebb formája a paraziták gazdaegyedek közti gyakorisági eloszlásának megadása volna, pl. egy táblázatban vagy ábrában. A legtöbb esetben azonban ez a nagy helyigénye miatt nem lehetséges. Ilyenkor úgy kell választanunk az indexek (leíró statisztikák) közül, hogy publikációjunk a lehető legtöbb információt tartalmazza a lehető legkevésbé redundáns módon.

3.1.3. Az adatközlés javasolható módja

17 Az előző lábjegyzetben említett szélsőséges esetben pl. az intenzitás átlaga 69, ennek 95%-os bizonyosságot tükröző konfidence intervalluma 8-310.
Ha van rá mód, egy intenzitás vagy abundancia hisztogram formájában közöljük a paraziták gyakorisági eloszlását is. Amennyiben ez nem lehetséges, adjuk meg a medián intenzitást, mint az eloszlás alakjának egyik jellemzőjét. A medián intenzitáshoz szintén adjuk meg annak 95%-os konfidencia intervallumát. Az eloszlás aggregáltságának mértékéül megadhatjuk a variancia/átlag hányadost, a tapasztalati eloszlást legjobban közelítő negatív binomiális eloszlás k kivejét (Bliss & Fisher 1953), vagy a diszkrepancia indexet (Poulin 1993). Ezek az aggregáltsági indexek meglehetősen hasonló jelentéssel bírnak.

3.1.4. A statisztikai hipotézisek tesztelése

Kettő vagy több minta fertőzöttségének összehasonlítása az alábbi statisztikai teszekkel történhet.

A prevalencia értékek (a fertőzött egyedek aránya) χ^2 próbával vagy Fisher-féle egzakt próbával hasonlíthatók össze.

Az átlagos intenzitások összehasonlítására bootstrap teszt a legalkalmasabb, noha ennek statisztikai ereje az erősen aggregált eloszlások esetén igen szerény. Ez megmutatja, hogy melyik populáció fertőzött példányai hordoznak több parazitát. Az abundancia értékek hasonlóképpen elemezhetjük.

A legalkalmasabb eszköz e célra mégis inkább a 3.3. fejezetben említett sztochasztikus egyenlőség teszt.

18 Annak valószínűsége, hogy nem követünk el második fajta hibát, vagyis, hogy a két minta közt létező különbséget valóban ki tudjuk mutatni.

19 Ez az előbbi kérdésektől többé-kevésbé független kérdés. Paradoxnak tűnik, de az aggregáltság mértékének különbsége miatt lehetséges, hogy az egyik populációban a fertőzött példányokon összességében több parazita él, a másik populációban viszont a fertőzött gazdákon jellemzően több parazita szokott előfordulni.
Az aggregáltsági indexek összehasonlítására pillanatnyilag nincsenek alkalmas statisztikai eszközöinek.

3.1.5. Melyik minta a fertőzöttebb?
E kérdésre nem válaszolhatunk egyetlen fertőzöttségi indexet összehasonlító egyetlen statisztikai teszttel, mert a fertőzöttség túl komplex mintázat ahhoz, hogy azt egyetlen mérőszámmal jellemezhesük. A különböző indexek a fertőzöttség más és más jellemzőjét ragadják ki, jelentésük lehet egymástól független, vagy többé-kevésbé egymással összefüggő, esetleg lehetnek minden biológiai jelentés nélküli mérőszámok is.

A fent jelzett 3 alapvető összehasonlítás egymástól viszonylag független tulajdonságokra vonatkozik (a fertőzött gazdák aránya, a paraziták mennyisége, ill. a fertőzöttség jellemző mértéke) ezért célszerű összehasonlítani. Ha a fertőzöttség mindhárom alapvető szempontból szignifikánsan nagyobb egyik mintában, mint a másikban, akkor valóban azt mondhatjuk, hogy az egyik minta fertőzöttebb.

3.1.6. A „parazitás nyomás” összehasonlítása minták között
A parazitológiai lapok terminológiai és metodikai gondjaitól eltérő problémákkal találkozhatunk az evolúciós és ökológiai lapok hasábjain. Itt igen gyakori, hogy szerzők a „fertőzöttséget”, „parazitáltságot”, „parazitás nyomást” vagy más efféle, ködösített és meghatározatlan dolgot kívának a gazdafajok vagy populációk között összehasonlítani, és mindezt gyakran a sokfajú parazita együttesek közös hatására értelmezve. E célra néha egyszerűen a prevalencia adatokat használják, ami a prevalencia jelentésének gyakran előforduló félreértelmezése. Hiszen ha a szelektíós nyomás létrejöttének minden feltétele adott, és a két minta között minden más változó értéke egyforma, akkor inkább a kisebb prevalencia jelent nagyobb szelektíós nyomást, mert itt ugyanannyi parazita a gazdapoluláció kisebb hányadán
sűrűsödve nagyobb különbségeket hoz létre. Máskor a sejtes immunválasz működésével kapcsolatos szervek (lép, Fabricius-féle tömlő) méretét elemzik, megint máskor egy testidegen fehérje bejuttatásával kiváltott gyulladásos válaszreakció méretét elemzik, mint pl. e dolgozat 2.6. fejezete.

Mit is jelenthet a faj vagy a populáció, illetve az ezeket reprezentáló minta „parazitáltsága”? Nagyon sokféle, és nagyon különböző dolgot. Felsorolok néhányat:
1. Jelentheti a paraziták jelenlegi elterjedését a gazdapopulációban. Ez elsősorban a parazita-ökológusok és epidemiológusok számára érdekes, prevalenciával fejezzük ki;
2. Jelentheti a paraziták közelmúltbeli elterjedését a gazdapopulációban. Szintén főként a parazita-ökológusok és epidemiológusok számára érdekes, szeroprevalenciával fejezzük ki;
3. Jelentheti a paraziták egyedszámát. Elsősorban a parazita-ökológusok számára fontos, számszerűsíthető pl. mint átlagos abundancia vagy intenzitás;
4. Jelentheti a fertőzést okozó parazita-együttsekek fajgazdagságát vagy taxonómiai változatosságát. Parazita-ökológiában fontos szempont, kifejezhető pl. a fertőzések faj-gazdagságaként vagy génesz-gazdagságaként;
5. Jelentheti a fertőzések patogenitását, ez főként orvosi és állatorvosi szempontból fontos, jellemezhető pl. morbiditási és mortalitási rátákkal;
7. Végül jelentheti a fertőzések által a gazdapopulációra a múltban kifejtett szelektív nyomást. Ez is a gazdaállat-evolúciós vizsgálatok fontos tárgya, közvetlenül nem mérhető. Mikor azt mérjük, hogy egy faj mekkora arányban allokálja erőforrásait a fertőzések elleni védelembe (pl. a megfelelő immun-szervek relatív méretével ezt becsüljük) akkor tulajdonképpen azt vizsgáljuk, hogy az adott faj a múltban milyen erőforrás-megosztási (allokációs) optimumra szelektálódott.

20 Szeroprevalencia az adott kórokozófajjal szemben specifikus immunválasz szerológiai nyomait mutató egyedek aránya a populációban. Ezek az egyedek tehát fertőzőttek voltak, esetleg a jelenben is fertőzőttek.
21 A virulencia a kórokozó képessége a gazda túlélési és szaporodási esélyeinek csökkentésére.
A gazda-parazita evolúciós-ökológiai irodalomban a „parazitálság” ködösített fogalma mögött e jelentések szinte kibogožhatatlanul keverednek. Meghökkentő, hogy e fogalmi zavar közepette gyakran olyan módszerek is remekül beválnak, melyek – első látásra legalábbis úgy tűnik – elvileg nem is működhetnének.

3.2. A parazita zsúfoltság

3.2.1. Bevezetés

A zsúfoltság megegyezik az intenzitással (az infrapopuláció méretével), de a parazita szemszögéből értelmezve. Tehát a zsúfoltság egyenlő az intenzitással, ha egyetlen infrapopulációt számszerűsítünk. Viszont egy gazdapest-populáció fertőzöttségének átlagos intenzitása nem egyenlő a rajta élő parazita-populáció átlagos zsúfoltságával. Az átlagos intenzitás ugyanis a gazdánkénti intenzítás

értékek összege osztva a gazdák számával, ezzel szemben az átlagos zsúfoltság a parazita-egyedenvégi zsúfoltság értékek összege osztva a paraziták számával. Vegyünk két hipotetikus mintát szemléltetésül:

<table>
<thead>
<tr>
<th>Mintája</th>
<th>Intenzitás</th>
<th>Zsúfoltság</th>
</tr>
</thead>
<tbody>
<tr>
<td>A minta: 4, 5, 6</td>
<td>(\frac{4 + 5 + 6}{3} = 5)</td>
<td>(\frac{4 \cdot 4 + 5 \cdot 5 + 6 \cdot 6}{4 + 5 + 6} = 5.13)</td>
</tr>
<tr>
<td>B minta: 1, 4, 7</td>
<td>(\frac{1 + 4 + 7}{3} = 4)</td>
<td>(\frac{1 \cdot 1 + 4 \cdot 4 + 7 \cdot 7}{1 + 4 + 7} = 5.5)</td>
</tr>
</tbody>
</table>

E példában átlagosan nagyobb infrapopulációk élnek A minta gazdáin, de mégis a B minta átlagos parazitái élnek nagyobb infrapopulációkban. Ez a látszólagos ellentmondás annak következménye, hogy a két minta eltérő aggregáltságot mutat. Érdekes módon ugyanis az átlagos parazita egyed az átlagosnál nagyobb intenzitással fertőzött gazdán él, és ez az eltérés kifejezettebb akkor, ha a minta aggregáltsága is erőteljesebb.

A valóságos adatsorok azt sugallják, hogy az átlagos intenzitás többé-kevésbé összefügg az átlagos zsúfoltsággal. De az itt bemutatott adatok közt is vannak ellentmondásos helyzetek, mikor az egyik mintában nagyobb az átlagos intenzitás,
mint a másikban, míg az átlagos zsúfoltság esetében a különbség iránya fordított. Ezért mikor a zsúfoltság hatásait kívánjuk elemezni, akkor célszerű magát az átlagos zsúfoltságot használni, és nem helyettesíteni azt az átlagos intenzitással.

Hasonló megközelítést láthatunk a közösségi ökológia és a viselkedés-ökológiá egyes területein (Lloyd 1967; Jarman 1974). A közösségökologusok mesterséges mintavételi egységeket (ún. kvadrátokat) használnak, szemben a parazitológusokkal, akik számára a gazdaegyed egy természetes mintavételi egységet alkot. A közösségökologiában Lloyd (1967) vezetett be két zsúfoltsági mérőszámot, az „átlagos zsúfoltság”-ot és az „átlagos igény”-t azon a célra, hogy aggregáltsági mérőszámokat alkosson. Lloyd „átlagos zsúfoltság” indexe az azonos kvadrátban élő más fajtársak száma egyedként átlagolva

\[m^* = \frac{\sum_{j=1}^{N} (X_j - 1)}{N} \]

ahol N az egyedszám és Xj (j = 1, 2, ..., N) a j-edik egyeddel azonos kvadrátban élő fajtársak száma. Ez a megközelítés azt fejezi ki, hogy egy egyed nem „zsúfolja” önmagát, a zsúfoltsági hatások tehát egyedek közti interakciókban, pl. agresszió során alakulnak ki. Ezzel szemben az „átlagos igény” azon a feltevése alapszik, hogy az egyedek akkor is „zsúfolják” önmagukat, ha egyedül vannak, tehát a zsúfoltsági hatások a környezeti erőforrások (pl. táplálék) korlátozott volta miatt alakulnak ki. Tehát az „átlagos igény” egyenlő a kvadrátonkénti egyedszámok egyedszámok szerint súlyozott átlagával. Egyetlen magányos egyedre vonatkoztatva Lloyd „átlagos zsúfoltság” indexe definíció szerint 0, míg „átlagos igény” indexe 1; és általánosságban az „átlagos igény” egyenlő „átlagos zsúfoltság” +1. Az „átlagos igény” indexe megegyezik a Jarman (1974) által Lloyd-tól függetlenül bevezetett „tipikus csoportméret” indexével, mely azt fejezi ki, hogy egy átlagos egyed mekkora csoportban él.

A két index bármelyike használható paraziták sűrűségfüggő tulajdonságainak elemzésére. Szükség lehet azonban a zsúfoltságnak más skálákon, pl. logaritmikus skála mentén való kifejezésére is. Ezért a továbbiakban a parazita zsúfoltságot az infrapopuláció méret (intenzitás) monoton növekvő függvényeként definiáljuk, ami speciális esetként foglalja magába a fenti definíciókat.

A közismert statisztikai eljárások egyike sem alkalmas zsúfoltság indexek elemzésére. Ezek ugyanis azon az előfeltévésten alapulnak, hogy az adatsorok
egymástól független adatokat tartalmaznak. A zsúfoltság adatsorok viszont nem ilyenek, mint azt az alábbi hipotetikus példán illusztráljuk:

gazda intenzitás értékek: 1, 2, 3
parazita zsúfoltság értékek: 1, 2, 2, 3, 3

Vegyük el az utolsó parazita egyedet, és lássuk a változásokat:

gazda intenzitás értékek: 1, 2, 2
parazita zsúfoltság értékek: 1, 2, 2, 2

Vegyük el az utolsó gazdaegyedet, és lássuk a változásokat:

gazda intenzitás értékek: 1, 2
parazita zsúfoltság értékek: 1, 2

Tehát ha egyetlen parazita vagy gazda egyedet hozzáadunk vagy elveszünk, akkor az intenzitás adatsornak csak egyetlen tagja változik, míg a zsúfoltság adatsor több adata összerendezett módon, egyidejűleg változik meg. Tehát a zsúfoltság adatsor nem-független adatokból áll, feltéve, hogy az intenzitás adatok közt 1-nél nagyobb értékek is előfordulnak, ami a parazitológiai gyakorlatban természetes. Az alábbiakban leírjuk a zsúfoltság adatsorok néhány tulajdonságát, és az adatok nem-független jellegét kezelni képes statisztikai eljárásokat vezetünk a parazita zsúfoltság kezelésére.

3.2.2. A zsúfoltság kvantifikálása
Egyetlen parazita egyedre nézve a zsúfoltság értéke egyenlő az intenzitás értékével. Ezt adott helyzetekben hasznos lehet egy monoton növekvő függvény alapján transzformálni, de ez már alapvetően a kísérleti elrendezés vagy a megfigyelési adatok biológiai interpretációjának függvénye. Példa erre a logaritmus-transzformáció [zsúfoltság = ln(intenzitás)], mely a különbségek arányát, és nem azok abszolút értékeit tükrözi (tehát az 1 és 2 közti különbség azonos a 10 és 20 közti különbséggel), vagy a már említett Lloyd-féle „átlagos zsúfoltság” (ahol zsúfoltság = intenzitás – 1).

Többféle zsúfoltság-indexet alkothatunk egy parazita populáció vagy az abból vett minta egyedenkénti zsúfoltság-értékeiből. Technikai okok miatt azonban
hátrányos volna pl. a medián zsúfoltság használata. Az erősen aggregált parazita eloszlások esetén ugyanis a medián zsúfoltság gyakran egyenlő a maximális zsúfoltsággal, pl.:

\[1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 20\] (átlagos intenzitás=3,25)

Ebben a mintában 39 parazita egyed szerepel, átlagos zsúfoltsága = 11,36, míg medián zsúfoltsága = 20. A medián érték tehát gyakran egyetlen (a legfertőzöttebb) gazdaegyed fertőzöttségének mértékétől függ, ami drámaian csökkenti a mintából számított becslés megbizhatóságát, ezért inkább az átlagos zsúfoltság használata ajánlható. Az átlagos zsúfoltság \(P \) számú parazitát tartalmazó populációra vagy mintára

\[
\text{átlagos } C = \frac{\sum_{j=1}^{P} c_j}{P},
\]

ahol \(c_j \) jelöli j-edik parazita zsúfoltságát.

Az átlagos zsúfoltság mérőszáma néhány paradoxnak tűnő tulajdonságot is mutat. Így pl. ha bizonyos gazdaegyedeken növeljük a paraziták egyedszámát, akkor előfordulhat, hogy az átlagos zsúfoltság csökken, és megfordítva. Illusztrációként tekintsünk egy gazdapopulációt, amely mindössze három egyedből áll:

intenzitás: 1; 2; 10:
átlagos intenzitás = 4,33;
átlagos zsúfoltság = \((1*1+2*2+10*10) / (1+2+10) = 8,077 \)

Adjunk most egy parazita egyedet a második gazda fertőzöttségéhez, ekkor:

intenzitás: 1; 3; 10:
átlagos intenzitás = 4,66;
átlagos zsúfoltság = \((1*1+3*3+10*10) / (1+3+10) = 7,857 \)

te hát az átlagos zsúfoltság csökkent.

E fejezet alapjául szolgáló, és a lábjegyzetben citált cikkünkben matematikus társszerzőim kidolgozták a
• konfidencia-intervallum számításának módját bias-corrected and accelerated (BCa) bootstrap eljárással;
• 1-mintás statisztikai teszt számítását a konfidencia-intervallum számítás eljárásának módosításával;
• 2-mintás statisztikai teszt számítását szintén a konfidencia-intervallum számítás eljárásának módosításával;
• valamint valós parazitológiai minták adatainak felhasználásával elemezték e tesztek megbízhatóságát.

Ezek a matematikai részletek megtalálhatók hivatkozott cikkünkben, de a jelen fejezetben részletes ismertetésüktől itt eltekintünk, mert (1) ez alapvetően a társ szerzői munkájának eredménye, és mert (2) elsősorban matematikai természeti. A biológus felhasználóknak ráadásul nem is kell feltétlenül ismernie a matematikai eljárások részleteit, mert a statisztikai tesztek elvégezhetők a Quantitative Parasitology 3.0 (Reiczigel & Rózsa 2005) programcsomaggal, mely az internetről ingyen letölthető.

3.2.3. Tárgyalás

Lloyd (1967) közölt egy parametrikus levezetést az 1-mintás problémára – standard hiba és konfidencia intervallum becsülést – negatív binomiális eloszlást feltételezve. Általános esetére Reed (1983) jackknife eljárást javasolt a konfidencia
intervallum számítására. A citált dolgozatunkban mi egy bootstrap eljárást javasoltunk, mely általában jobb eredményt ad, mint a jackknife. Szimulációink – melyeket itt nem ismertettem – eredményei szerint ez jelen esetben is így van. A bootstrappal becsült intervallumok 1-4%-al keskenyebbek, és tényleges szintjük közelebb van a nominális színthez, mint a jackknife eljárással becsült intervallumoké. Eredményeink szerint azonban a megbízható becsléshez még bootstrap eljárással is legalább néhány száz gazdaegyedből álló mintára van szükség. A szükséges mintaelemszám mérete függ az eloszlás aggregáltságának mértékétől (erősebb aggregáltág esetén nagyobb mintaelemszám szükséges) illetve a zsúfoltsági index skálázásának módjától (lineáris, logaritmikus stb.).

A parazita infrapopuláció mérete a paraziták könyezetének egyik legfontosabb komponense. Pl. a galandférgek (Cestoda) esetében évtizedek óta intenzíven kutatják a lehetséges élettani mechanizmusokat (szénhidrátokért folyó versengés, fajtársak által kiválasztott gátló hatóanyagok stb.) és morfológiai következményeket (áttekintést lásd Roberts 2000 dolgozatában). Sok más élősködő, pl. protiszták, fonálték, buzogányfejűek és izeltlábúak ivar aránytársak által kiválasztott gátló hatóanyagok stb.) és életmenete szintén erőteljes sűrűségfüggő vonásokat mutat. A zsúfoltság hatásainak elemzése során azonban a legtöbb korábbi szerző valójában intenzitás értékekkel számolt. Mivel egyetlen parazita egyedre vonatkozatlan a zsúfoltság és az intenzitás értéke definició szerint megegyező, illetve nagyobb mintákban az átlagos intenzitás pozitív korrelációt mutat az átlagos zsúfoltsággal, ez nem eredménytelen megközelítés. Mégis azt gondoljuk, hogy a zsúfoltság mérőszámok közvetlen használata, melyet most már új statisztikai eljárások is megkönnyítenek, a paraziták sűrűségfüggő tulajdonságainak pontosabb elemzését teszik majd lehetővé.

Legjobb tudásunk szerint cikkünk az első tanulmány, mely a zsúfoltsági index bevezetését szorgalmazza a parazitológiában, és egyúttal alkalmas statisztikai eszköztárat is biztosít ehhez. A *Quantitative Parasitology 3.0* programcsomagunk keretein belül ehhez ingyenes és felhasználóbarát szoftvert is biztosítunk, ami a statisztikában járatlan felhasználók számára is megkönnyíti a zsúfoltsági értékek elemzését. Úgy véljük, hogy ennek nemcsak a parazita-ökológusok, hanem talán még a parazita-taxonómusok is hasznát vehetik. Mivel a parazita morfológia gyakran erősen függ a zsúfoltságtól, a hasznos lenne a parazita fajleírásokban a mintára jellemző átlagos zsúfoltság értéket, illetve ennek konfidencia intervallumát is megadni.
3.3. Sztochasztikus egyenlőség

E dolgozat elsősorban matematikai jellegű és matematikus társzerzőim munkája, és ezért itt részleteiben nem ismertetem. Az új teszt felhasználóbarát változata elérhető a Quantitative Parasitology 3.0 (Reiczigel & Rózsa 2005) szoftverben.

3.4. Quantitative Parasitology

2000 tavaszán jelent meg cikkünk (az értekezés 3.1. fejezete), mely a biostatisztikai eszköztár parazita-ökológiai alkalmazásait tekintette át, felhívtva a figyelmet az elterjedt hibákra, és matematikai szempontból megalapozott megoldásokat javasolt. E cikk végén az olvasóknak azt igértük, hogy egy felhasználóbarát szoftver közreadásával ingyenes segítséget nyújtunk a javasolt statisztikai eljárások kivitelezéséhez. A szoftver – Quantitative Parasitology 1.0 – sajnos csak hónapokkal a cikk megjelenése után készült el, és a bérmarkában megíratott Windows-os keretprogram hibái miatt megbízhatatlannak tűnt. Ezért újabb néhány hónappal
később közreadtuk a 2.0-ás verziót, mely már mentes volt ezektől a kezdeti hibáktól, és az interneten át ingeresen terjesztve számos felhasználóhoz eljutott. Végül 2005 augusztusától elérhető a 3.0-ás verzió, amely több statisztikai funkcióval bővült, így pl. az egymintás és kétmintás zsúfoltság (3.2. fejezet), valamint a sztochasztikus egyenlőség (3.3. fejezet) tesztekkel.

A szoftver statisztikai moduljait (egyetlen kivétellel) Reiczigel Jenő tervezte. Használatának előnye voltaképpen abban áll, hogy nem engedi a felhasználót az egyik vagy másik statisztikai teszt által félrevezetni. Egy, kettő vagy több mintát kiválasztva ugyanis a felhasználó egy-egy menüvel találja magát szembe. Ez a menü a szélsőségesen aggregált minták esetén is korrekt módon elvégezhető statisztikai tesztek listája, de valójában megfelel a biológiaiág értelmes kérdések listájának. Ezekután az egyik tesztet elvégezve a felhasználó nem eshet abba a hibába, hogy az eredményt túl-interpretálva a két minta fertőzöttségének általános különbözőséről beszéljen, hiszen láthatóan sok más (szintén értelmes biológiai jelentésű) tesztet is elvégezhet.

Citációs listánk adati alapján úgy tűnik, hogy szoftverünket felhasználják pl. francia és szlovák rókák, amerikai vándorkagylók, magyar papilloma-vírusok, verebek, fecskék és szarvasok, spanyol vaddisznók, borzok, szirtifoglyok és gyurgyalagok, angol angolnák, argentín pisztrángok, török pontyok, német keszegek, hawaii, kaliforniai, oregoni, északi-tengeri, atlanti és portugál halak, bolgár csigák, chilei denevérek, galápagoszi ölyvek és földipintyek, kazah tatárantilopok, feketedengeri rákok, új-zélandi madarak és jamaikai kutyák fertőzöttségének elemzésében.

Összességében tehát úgy tűnik, hogy ez a szoftver hatékony eszköz arra, hogy a parazita-ökológusokat az általunk javasolt biostatisztikai elvek követésére ösztönözzük.
3.5. Irodalom

4. Kitekintő kérdések

4.1. Fertőzések rosszindulatú terjesztése

4.1.1. Bevezetés

Egy gazda-parazita kölcsönhatás három szakaszra bontható, úgymint (1) a fertőzés, (2) a parazita növekedése és szaporodása a gazdában, és végül (3) a továbbfertőzés egy újabb gazdaegyedbe. E szakaszok során a felek érdekei megváltozhatnak. Az első szakaszt nyilvánvalóan ellenérdekelte, hiszen a parazita adaptív érdeke a gazdaszervezetbe való bejutás, míg a gazda érdeke ennek elkerülése. A második szakaszt színtén ellenérdekelte, hiszen a parazita érdeke növekedni és szaporodni, míg a gazda érdeke a benne élő parazitából megölni, vagy legalábbis inaktív helyzetbe kényszeríteni. A harmadik szakaszt a parazita érdeke, hogy terjesztő képleteinek (propagulumai) továbbjussanak egy újabb gazdába. De mi itt a gazda érdeke? Ha eddig nem sikerült megakadályoznia a parazita bejutását és szaporodását, vajon most érdeke-e hogy megakadályozza a továbbfertőzést?

Képes-e a gazdapopulációra ható szelekciós nyomás befolyásolni az állatok parazita-továbbadó képességét? A magatartás egyes olyan vonásai, mint pl. a szocialitás mértéke, a párizási rendszer (monogámlia/promiszkuitás), az ürlés helye és ideje, a potenciális vektor-szervezetekkel való kapcsolat stb. vélhetően többkevesebb genetikai befolyás által (is) meghatározott tulajdonságok. E tulajdonságok - számos más költség- és haszontényező mellett -, befolyásolhatják a fertőzött állatok továbbfertőzési képességét (Apanius & Shad 1994).

Számos állatfajt ismerünk, amelyek fertőzött példányai a paraziták terjesztésére szolgáló aktív viselkedési elemeket mutatnak. E magatartásformákat tradicionálisan vagy a paraziták általi manipuláció eredményének, vagy a fertőzés nem-adaptív melléktermékének tekintik (Moore & Gotelli 1990; Poulin 1995). Ezzel ellentétben úgy is érvelhetnénk, hogy a szelekció az állatok relatív szaporodási sikerét maximalizálja. Ezért a szelekció vélhetően kedvez annak, hogy a fertőzött állatok a kórokozók továbbadásával megkárosítsák fajtársaikat, és ez által némi relatív előnyre tegyenek szert. De vajon kedvezhet-e a szelekció a fajtársaik megkárosító egyedeknek, ha azok közvetlen hasznot nem is húznak mindebből? Ezek a kérdések talán azért ilyen zavarba ejtők, mert már az iskolai oktatás is számos téves hiedelmet plántál belénk a szelekció fogalmával kapcsolatban. Oktató munkámban magam is próbálkoztam a szelekció körüli fogalmi káosz tisztázásával (Rózsa 1999a; 1999b; 1999c).

A jelen probléma tisztázására egy egyedi alapú („individual-based”) matematikai modellt készítettem, amely alkalmas keretet biztosít arra, hogy szimulációs kísérletekben vizsgáljam a gazdaállat indukált továbbfertőzés adaptív előnyeit és hátrányait.

4.1.2. Modellépítés és szimuláció
Az egyedi alapú matematikai modellek egyedi szintű genetikai variabilitást ábrázolnak (Judson 1994), ezért realiztikusabb módon ábrázolják az állélek és fajok kihalását, mint a hagyományos populáció-alapú modellek (Uchmanski & Grimm 1996); és így különösen alkalmasak a gazda-parazita koadaptáció ábrázolására (Reiczigel & Rózsa 1998).

meg. A szimulációs futások kezdetén a rezisztencia- és fogékonyság-allélek 50-50% eséllyel, vélettenszerűen helyezkednek el e lókuszon. Egy további, 11. lókuszon egy hipotetikus allélpár két tagja; a Gazda-indukálta Parazita Továbbfertőzés (GPT) allélja, illetve ennek fenotipikusan inaktiv allélpárja verseng egymással. A szimulációs kísérletek célja az allél-gyakoriság változásának elemzése ezen az egy lókuszon, míg a rezisztencia és fogékonyság allélek (a további 10 lókuszon) csak a gazda-parazita rendszert, mint szimulációs környezetet biztosítják.

Az egyszerűség kedvéért a GPT allél gyakorisága minden szimuláció kezdetén 0,5. Az első generációban a gazdaegyedek parazita fertőzöttsége 0 és 10 közötti, vélettenszerű mértékű (átlagosan 5). Minden gazda életciklus 2 alciklusal kezdődik, melyekben a gazda védekezése és a parazita szaporodása zajlik. A gazdák átlagosan a felére csökkentik fertőzöttségük mértékét, de a védelem tényleges hatékonysága az egyed rezisztencia-genotípusának függvénye. A túlélő paraziták ezután megkétszerezik létszámukat.

A gazda szaporodási szakaszban minden egyes utódot (N=100) két-két vélettenszerűen választott szülő hoz létre. A szülői allélek mendeli szabályok szerint örökülnek, mutáció nincs. A szülő-utód vonalon zajló vertikális továbbfertőzés ábrázolására minden utód fertőzöttsége egy olyan véletlen érték, melynek várható értéke egyenlő a szülői fertőzöttségek átlagával, és amely normális eloszlást mutat.

A fertőzöttséget potenciálisan növelhetik a GPT allél (allélok) hordozó fajtássakkal való érintkezések, mert ezek aktívan terjeszthetik a kórokozókat. A GPT homozigóták 10-10, míg a heterozigóták 5-5 fajtársukat fertőzik meg. Mindig 5-5 parazitával növelik az érintett fajtársak fertőzöttségét, ez a kezdeti átlagos fertőzöttség mértékével egyenlő. A parazita fertőzések átadásával nem csökkentik a saját fertőzöttségük mértékét (lásd alább). Az inaktiv alléltra nézve homozigóta egyedek nem fertőzik a saját generációjuk tagjait.

Ezután az utódok fele kiszelektálódik. Minden utód túlélésének esélye arányos a fertőzöttségének mértékével és a genomjában lévő rezisztencia allélek számával, e két tényezőt egyforma súlyval véve számításba. Az utódok túlélő fele ezután szülőnek minősül, és innen kezdődik a gazdaállatok új generációjának életciklusára.

Eltekintve a gazda-indukálta továbbfertőzés jelenségétől, a modell alapelve az, hogy szelekción folyik mind a parazita fertőzöttség, mind a rezisztencia allélek ellen. A paraziták tehát virulensek, de a rezisztencia is költséges, tehát járulékos hátrányokkal bír. A modell a valódi gazda-parazita rendszerek néhány fontos vonását
valósághűen ábrázolja; a szelekciós nyomás hatására a gazda rezisztencia normális eloszlást, a paraziták eloszlása aggregált eloszlást vesz fél, a populáció átlagos rezisztenciája és fertőzöttsége oszcilláló kölcsönhatást mutat. A modell QBASIC nyelven íródott, mintegy 100 sor terjedelmű, és „.exe“ fájl-ként futtatható.

Az egyes tetszőleges választott változók értékeinek hatását érzékenység-vizsgálatban elemeztem. Változtattam a gazda-populáció méretét (25-re és 100-ra), a gazda-védekezés/parazita szaporodás alciklusok számát (1-re és 4-re), valamint a parazita-terjesztő egyedek által kezdeményezett fertőző kapcsolatok számát (5-re és 20-ra a homozigóták, ill. 2-re és 10-re a heterozigóták esetében).

Minden szimuláció 200 programfutást tartalmazott, minden futás 100 generáció-váltást követett nyomon. Kétoldalas Wilcoxon-próbát alkalmaztam annak elemzésére, hogy a GPT allél gyakorisága (kezdetben 0,5) szignifikánsan változott-e a futások során.
17. ábra. A szimulációkban a gazdaegyedek számára a rezisztencia allélek nagy száma és az erős fertőzések egyaránt hátrányosak voltak, ezért a rezisztencia allélek száma egy haranggörbe alakú eloszlást vett fel (fent). A paraziták gazdaegyedek közti eloszlása egy jellegzetes aggregált eloszlás képét mutatta, mert a parazíták a fogékony gazdaegyedeken tömörültek (középen). A paraziták mennyisége és a gazdapopuláció átlagos rezisztenciája egymással enyhén összerendezettnek tűnő módon ingadozott (alul).
4.1.3. Szimulációs eredmények

Az 1. Szimuláció eredményei nem különböziknek egy neutrális állélpár véletlenszerű genetikai sodródása alapján várható eredményektől. A futások végén tapasztalt GPT allél-gyakoriságok nem különbözikek szignifikánsan a kiindulási értékektől ($P = 0.7507$). A 2. Szimuláció az inaktív allél szelekciós előnyét eredményezte. A futások végén tapasztalt GPT allél-gyakoriságok szignifikánsan kisebbek voltak a kiindulási értékeknél ($P < 0.0001$). A 3. Szimuláció a GPT allél szelekciós előnyét mutatta; a futások végén tapasztalt GPT allél-gyakoriságok szignifikánsan nagyobbak voltak a kiindulási értékeknél ($P < 0.0001$).

csökkentheti a benne élő békővégek mennyiségét azáltal, hogy a békővégek petéivel fajtársait megfertőzi.

Az 1. Szimuláció egyazon generáció tagjai között véletlenszerű továbbfertőzési útvonalat ábrázol, amelyben nincs szerepe az egyedek közti rokonsági viszonyoknak. A véletlenszerű fertőzési útvonal (amelyet gyakran összekeverne a horizontális fertőzési útvonalallal) realiztusuknak tekinthető az olyan kórokozó fajoknál, ahol a fertőző képlet (propagulum) nagy időbeli kitartásra („csak-ül-és-vár stratégia”) vagy jelentős térbeli távolságok áthidalására képes. Ez utóbbi képesség egyaránt következménye lehet a kórokozó aktív mozgékonyságának, vagy a víz általi, predátorok általi, vektorok (közvetítő szervezetek) általi terjedésének (Ewald 1994; 1995). Ha a fajtársak közti fertőzési útvonalak gyakran nagy térbeli vagy időbeli távolságot hidalnak át, akkor gyakorlatilag véletlenszerűek, tekintet nélkül a gazdaegyedek közti rokonsági fokokra. Ezért a seleckció nem hat a paraziták továbbadását befolyásoló állólokra, hiszen az ilyen állékok okozta előnyök és hátrányok egyformán oszlanak meg a különböző genotípusok között. Szemben a tipikus gazda-parazita evolúciós konfliktus „fegyverkezési verseny” jellegével, ez a kapcsolat egyoldalú; a paraziták arra selektálódtak, hogy a terjesztésük érdekében manipulálják gazdáik magatartását, míg a manipulációval szembeni ellenállást befolyásoló állékek semleges állékként viselkednek a gazda-populáció génállományában.

18. ábra. A szimulációs eredmények 200-200 futtatás eredményeit átlagolva. A paraziták terjesztését elősegítő allél (GPT) inaktív allélpárjával szemben szelekciós hátrányba kerül, ha a fertőzési útvonalak a véletlennél nagyobb esélytel tartanak a rokon egyedek felé (vertikális fertőzés), szelekciós előnybe kerül, ha a fertőzési útvonalak a véletlennél kisebb esélytel tartanak a rokon egyedek felé (horizontális fertőzés), és neutrális allélpár tagjaként viselkedik, ha a fertőzési útvonalak véletlenszerűek.

Egyrészt a „spite” költséges, hiszen egy fajtárs megtámadása azonnal kiváltja a hasonló ellentámadást, pl. egy harapásra azonnal viszontharapás a válasz. Ezzel szemben egy fertőzött állat kórokozóit anónim módon juttathatja nem-fertőzött fajtársaira, és azok képtelenek ezt hasonló módon, azonnal megtorolni. Másrészt úgy tűnik, hogy a nem-rokon egyedek károsításának adaptív értéke végső soron a rokon egyedek közvetett támogatásában rejlik. A szociális magatartás keretein belül azonban mindegy kevésbé hatékony rokon-támogatási mód, mint a legközelebbi rokonok főismerő és közvetlen támogatása (ez utóbbi a természetben igen elterjedt). Csak hogy a virulens paraziták krónikus fertőzésétől szenvedő állatok valószínűleg nincsenek abban az állapotban, hogy hatékonyan segíthessék rokonaikat, ugyanakkor jelentősen megnövekszik az a képességük, hogy másoknak ártsanak.

Összefoglalásul elmondható, hogy az állatok nem szelektálódnak a véletlenszerű fertőzési útvonalakon terjedő – és ezért várhatóan nagyon virulens! – kórokozók terjedésének befolyásolására. A nem-rokon fajtársak irányba toldott fertőzési utak viszont arra szelektálják a gazdapatolációt, hogy a bennük élő virulens
kórokozók terjedését elősegítsék. A véletlenszerű fertőzési utak semleges jellegének fölfedezése jelentősen módosíthatja az állatok járványtani és szociobiológiai sajátságainak korábbi értelmezését.

4.1.4. Altruizmus és rosszindulat

Az altruizmus jelenségét azóta számtalan fajnál kimutatták, irodalma ma már könyvtári méreteket ölt. Ezzel szemben a rosszindulat fogalma szinte feledésbe merült. Néhány kivételes helyzetből eltekintve a rosszindulat nem tekinthető az állatok szociális magatartásformájához közzét gyakran vagy feltűnően megjelenő magatartásnak. Ennek talán az lehet az egyik oka, hogy mind az altruizmus, mind a rosszindulat adaptív értéke természetesen csak akkor érvényesülhet, ha az állat a megfelelő fajtársak irányában mutatja. Képesnek kell tehát lennie arra, hogy a rokon, illetve az idegen egyedeket felismerje és megkülönböztessze a fajtársak átlagos többségétől. A természetben számos rokon-felismerési módot azonosítottak, ezek jelenléte lehetővé teszi a rokon egyedek megkülönböztetését és adatív támogatását. Az idegen

fajtársak felismerését, és az átlagos többségtől való megkülönböztetését lehetővé tévő mechanizmusok azonban nem ismertek. Talán ez lehet az egyik oka annak, hogy a rosszindulat hiányozni látszik sok altruista állat viselkedéskészletéből.

Csakhogy a virulens patogének krónikus fertőzéseit hordozó állatok helyzete egészen más. Ök elveszítik azt a képességüket, hogy rokonaikat támogassák, sőt, már a pusztá jelenléttükkel is árthatnak nekik. Jelentősen megnövekszik viszont az a képességük, hogy ártsanak fajtársaiknak. A kórokozó jellegétől függően, esetleg egyszerre sok fajtársnak, és gyakran anonim módon. Ha a fenti érvelésünket helyes volt, és a horizontális transzmisszió túlsúlya valóban a kórokozók aktív terjesztésére szelektálja a gazdaállatokat, akkor ez a Hamilton-féle rosszindulat-hipotézis egy speciális, patogének által közvetített megnyilvánulása.

A paraziták általi manipuláció csökkentheti a gazda túlélési és szaporodási esélyeit, és ebben az értelemben a virulencia szerves részét képezheti. Ekkor a gazdapopuláció arra szelektálódhat, hogy kivédje a paraziták általi manipulációt. Másrészt viszont a virulencia egy adott szintje manipulációval is, illetve anélkül is megjelenhet. Különösen igaz ez a letális kórokozókra és a gazdáikat kasztráló kórokozókra. Tekintsük példaként a Plagiorhynchus buzogányfejű lárváját, amely először kasztrálja a köztigazda ászkarákat (Isopoda), majd úgy manipulálja annak viselkedését, hogy növekedjen a seregély (Sturnus vulgaris), mint végleges gazda általi elfogyasztás esélye (Moore 1983). A kasztráció után az ászkarák már olyasféle problémával néz szembe, mint egy halálraítélt, aki nem tudja, hogy segítőkész legyen-e vagy ellenszegüljön, de akárhogyan is dönt, már nem menekülhet.

E hipotézis számos, kísérletesen is tesztelhető predikcióval eredményez. Egyszerűen csak ismernünk kell az adott gazda-parazita rendszer fertőzési útvonalainak jellemzőit a populáció belüli rokonsági fokok függvényében, és máris megjósolhatjuk a gazda adaptív viselkedését. Sajnos pont ezt nem ismerjük.
gyakorlatilag egyetlen gazda-parazita rendszerben sem. Csakhogy a gazdaállat és a kórokozó életmódját, életciklusuk egyes szakaszait sokszor egészen jól ismerjük, és ez a leíró jellegű információ gyakran elégséges lehet arra, hogy durva becsületeket fogalmazzunk meg a fertőzési utak jellegéről, és ez által a gazdákra ható szelektiósi nyomás természetéről is.

4.1.5. A manipulációs hipotézis korlátai

E hipotézis talán egyetlen gyenge pontja az érvényességi körfi definiálatlan voltában rejlik. Gyakran azok a paraziták is manipulálni látszanak gazdáik viselkedését, amelyeknek ebből látszólag semmilyen adaptív előnye nem származik (Poulin 1994). Máskor viszont nyilvánvaló előnyökkel járna a gazda viselkedésének egyszerű (pl. hormonális) manipulálása, de a parazitafajok sokasága ezt mégsem teszi meg. Így pl. a nemi úton terjedő kórokozók (STD) elemi érdeke volna a gazda szexuális aktivitását serkenteni, mégsem ismert egyetlen STD sem, amely növelné a libidót (Lockhart et al. 1996).

Jelen dolgozatban arról próbálom meggyőzni az olvasót, hogy a gazda adaptív érdekeinek figyelembevételével módosítva a manipulációs hipotézis sokkal pontosabb predikciókat nyújt.
4.1.6. Az állatok továbbfertőzési viselkedése

Alternatív értelmezési lehetőségeket kínál, ha azt feltételezzük, hogy a parazitákat aktívan terjesztő gazdaállatok nem egyszerűen a paraziták általi manipuláció magatehetetlen álkozatai. Ebben az értelmezésben a fertőzött gazdán bekövetkező és a parazita terjesztését elősegítő változás (1) vagy olyan parazita adaptáció, amely a gazdaállat szempontjából neutrális tulajdonság, (2) vagy a gazda és a parazita számára egyaránt előnyös, közös adaptáció.

1. predikció. A szülő-utód fertőzési út sok gazda-parazita rendszert jellemző. Ez a vertikális transzmisszió egyik jellegzetes megnyilvánulása, ezért várhatóan a fertőzés továbbadásának csökkentésére szelektálja a gazdákat. Ezzel párhuzamosan a virulencia csökkentésére szelektálja a parazitákat. Nem meglepő, hogy azok a látványos hiányai viselkedésformák, amelyek csökkentik a fertőzés továbbadásának esélyeit, rendszerint a rokoni kötelékek keretein belül figyelhetők meg az állatvilágban. De ha el is tekintünk az olyan szoros rokoni kötelékektől, mint a szülő-utód kapcsolat, akkor is elmondható, hogy az egyedek térbeli közelsége gyakran együtt jár a genetikai hasonlóságuk nagyobb fokával. Ez szelekciós előnyt biztosít a fertőzések terjesztését csökkentő tulajdonságoknak, hiszen ezek előnyeit főként a térben közeli, tehát többé-kevésbé rokon egyedek élvezik. Így pl. a guli pán (Recurvirostra avosetta), mely sekély tengerparti vagy kontinentális sós vizek planktonikus rákjait fogyasztja, költési időben nem ürít széket a táplálkozási helyeken, hanem e célból időnként kiszalad a partra. A költési időn kívül, a vonulási útvonalak és telelőhelyek táplálékszerző izein azonban nem mutat ilyen magatartást (Lengyel Szabolcs szóbeli közlése).

3. predikció. A pelágikum, vagyis a nyíltvízi élettér szabadon lebegő vagy úszó közösségeit (plankton till nektont) alkotó populációkon belül kétségkívül megvalósulhatnak a véletlenszerű fertőzési utak, hiszen a populáció rokon egyedeit a fizikai közeg áramlásai nyilván elsodorják egymás mellől. Hasonlóképpen, a kicsi és röpképes állatok, mint pl. sok apró ízeltlábú faj, gyakran a szél által passzíván röpítve terjednek, esetükben szintén nem várható, hogy a térbeli közelség jól
összefüggjön a genetikai hasonlósággal. Ha egy közvetett fejlődési ciklusú parazita egyik gazdafaja pelágikus, vagy passzív röpülő („szelfújta”) állat, akkor ennek közvetítésével a másik gazdafajon belüli fertőzési útvonalak is véletlenszerűvé válhatnak. Ha például maláriaszúnyogot gyakran elsodorja a szél, akkor ennek hatása az emberek közti *Plasmodium* továbbadást is randomizálja.

Ezzel szemben a bentikus élettér, a sűrű vizinövényzet, vagy a kis vízterek állatai, és főként a szárazföldi állatok viszonylag gyakran vannak körülveve a genetikailag többé-kevésbé rokon fajtási csoportokkal. Az egyedek közti térbeli távolság tehát pozitív korrelációt mutat a köztük lévő genetikai hasonlósággal. Ebben az esetben a vertikális fertőzési utak nagy előfordulási gyakorisága várható – hacsak nem két nagyon különböző testméretű gazdafaj váltakozik a parazita közvetett fejlődési ciklusában. Ez utóbbi esetben ugyanis a paraziták hosszú időt töltzenek el a nagytestű gazdában, amely ez alatt viszonylag nagy távolságokat bejár, és ez randomizálja a kistestű gazdafaj példányai közti (közvetett) továbbfertőzést. Ezzel szemben a kistestű gazda várhatóan egy kis területen belül mozog (ha nem röpül), benne a parazita várhatóan rövidebb időt tölt, és ez nem képes randomizálni a nagytestű gazdafaj példányai közti (közvetett) továbbfertőzést.

Érdemes itt a lándzsás mételyt (*Dicrocoelium dendriticum*), mint klasszikus tankönyvi példát megemlíteni. A mételylárva megöli a közligazdát, a hangyát. Miközben haldoklik, a hangya főlmászik egy fűszál egyhajóba, ott rágóival szilárdan rögzíti magát, ezzel növelve esélyét annak, hogy a lárvát egy legelő birka – a végleges gazda – belészt, majd húzódik át belé, ezzel elegendő esélyt adva a lárva a végleges gazdája elérésekor, és ezáltal a métely továbbadását. A hangyák közti fertőzési útvonal indirekt, megszakítja a kérődző, illetve csiga gazdaállatokban való hosszas fejlődési szakasz (ezek a hangyák szempontjából nézve vektorok); ezért a továbbfertőzés véletlenszerű, a hangyák közti rokonsági viszonyokra való tekintet nélkül zajlik. Ezért a továbbfertőzés hangyánál általános szabotálásának előnyeit egyenlő esélyvel élveznek azok a hangyák, amelyek hordozzák a megfelelő allélt, és azok is, amelyek nem. Így ez az allél nem tudna szelektiós előnyt biztosítani az őt hordozó hangyáknak. Az aktív közreműködés egy halálos kórokozó fajtársakra való terjesztésében ezért semleges tulajdonság a hangyák magatartásának evolúciójában. Egyszerűen hagyják magukat manipulálni, és nincs esélyük ellen-adaptáció kifejlesztésére.
Áttekintve a paraziták által manipulált gazdákról szóló irodalmi összefoglalókat (Moore & Gotelli 1990; Poulin 1994; 1995; Moore 2002) azt látjuk, hogy az esetek túlnyomó többségében (pl. a Poulin által áttekintett 114-ből 100 esetben) a manipulálni képes paraziták közvetett fejlődési ciklust mutatnak, és a zsákmányul szolgáló kistestű köztigazdát manipulálják, de egyszer sem a nagytestű végleges gazdát.

előnyökre tehet szert. Ebben a helyzetben érdekközösség alakulhat ki a gazdaállat és a benne élő paraziták között, hiszen mindkét fél profitálhat a fertőzés terjesztéséből. Ez az érdekközösség természetesen csak addig tart, amíg a fertőzött emigráns állat képtelen a fertőzésből kígyógyulni, nyilvánvalóan előnyösebb lenne számára a kórokozótól megszabadulva beilleszkedni a befogadó népességbe.

4.1.7. Az emberek továbbfertőzési viselkedése
Elképzelhető, hogy evolúciós múltunk során az emberi magatartásra ható szelektív nyomás egy részét fertőző betegségek és paraziták fejttették ki őseinkre. A bevándorlók a korai hominidák esetében is horizontálisan adták tovább fertőzéseiket. Sőt, a fajunk esetében elterjedt nem-reproduktív szexualitás, mint pl. a prostitúció vagy a homoszexualitás lehetőséget teremthetett a nem-rokon fajiibránk irányába történő fertőzésre anélkül, hogy a közös utódok épességét veszélyeztetné. (Feltéve persze, hogy az idegenek irányában mutatott több-kevesebb nemi preferenciával párosul, és nem korlátozódik a kis szociális közösségek határain belülre.)

6. predikció. Hipotézisünk ből következik tehát, hogy az etnikai kisebbségek szórványban élő tagjai, a prostitúáltak és a homoszexuálisok – ha ösztönösen viselkednének – sokkal inkább késztetést érezhetnének a fertőzések továbbadásának elősegítésére, mint az adott társadalom „átlagos, bennszülött többsége”. Ez a predikció mai társadalmakban természetesen nem vizsgálható, hiszen egy ilyen munkaterv alapvető etikai korlátokat rúgna fel.
7. predikció. Másrészt az is hipotézisünkből következik, hogy az adott társadalom átlagos, bennszülött többsége – ha ösztönösen viselkedne – ellenadaptációként hajlamot mutasson a gyűlöletre, melynek célcsoportjai nem a társadalom véletlenszerűen kiválasztott csoportjai. E „zsigeri” gyűlölet preferenciálisan az etnikai kisebbségek, prostituáltak és homoszexuálisok szociális és szexuális kapcsolatrendszerből való kiközösítésére irányulna. A helyi közösség átlagembere, ha „ösztönösen” viselkedne, várhatóan akkor is a fertőzések felelőtlen, vagy éppen szándékos terjesztésével fogja vádolni a bevándorlókat, a prostituáltakat és a homoszexuálisokat, ha e vádaknak éppen semmilyen ténybeli alapja nincs. Talán jellemző adalék, hogy pl. a szifiliszt „francia betegség”-nek ismerik az olaszok, és „olasz betegség”-nek a franciaik. Hétköznapí tapasztalat, hogy a helyi többség a rossz testszagu test, vagy az alacsony higiéniai szint más egyszerű tüneteit gyakran a kisebbségek jellemzőiként emlegeti, teljesen függetlenül attól, hogy erre van-e bármilyen ténybeli alapja (Gould 1981). Nehéz volna letagadni azt a szégyenteljes tényt, hogy az etnikai kisebbségek „trettes” vagy a „bűdös” voltára utaló szófordulatok mennyire ismerősen csengenek a világ – s benne a művelt Európa – bármely nagyvárosának aluljáróiiban.

Mivel az idegengyűlölet mélyen gyökerezik minden emberi társadalomban, nem valószínű, hogy bármikor is lehetőségünk nyilna objektív módon megvizsgálni azt, hogy vajon az etnikai és szexuális kisebbségek tagjai vajon valóban mutatnak-e valamilyen specifikus, a népesség átlagától jól megkülönböztethető szerepet a patogének terjesztésében. Egy ilyen vizsgálati célkitűzés nem szalonképes sem erkölcsi, sem politikai szempontból. Érdemes azonban megjegyezni, hogy a globális AIDS járvány kialakulásában kiemelt szerepet játszanak a bevándorlók, a prostitúáltak és homoszexuálisok (Oldstone 1998). Ez bevallottan gyenge érv, hiszen sok más, szintén jelentős járvánnyal kapcsolatban ez a lehetőség még csak fel sem merült.

Úgy is érvelhetnénk, hogy az idegengyűlölet léte és elterjedtsége fajunkban talán önmagában is arra utal, hogy a bevándorlók, prostituáltak és homoszexuálisok által horizontálisan terjesztett kórokozók jelentős szelekcios nyomást fejtettek ki őseinkre. Ennek az érvnek azonban az a gyengeje, hogy a horizontális fertőzési útvonalak önmagukban is növekvő virulenciára szelektálták a kórokozókat, tehát az etnikai szórványban élők, a prostituáltak és a homoszexuálisok által terjesztett
kórokozók talán eleve veszélyesebbek, mint a helyi átlagos, bennszülött többség kórokozói.

A főnt vázolt elgondolások az emberi idegengyűlölet, egyéb fobiák és kirekesztési hajlamok természetéről mindenesetre csak egy adaptácionista gondolatmenet eredményei, és tudjuk jól, hogy az adaptácionista megközelítésnek erős korlátai vannak (Pigliucci & Kaplan 2000), különösen akkor, ha az emberi magatartásra kívánjuk alkalmazni. Ez az érvelés mindenesetre támpontot nyújthat azok számára, akik úgy vélik, hogy az emberi magatartás jelenkori sajátságait részben az őseinkre egykor hatott szelekciós nyomások formálták. Nyilvánvaló, hogy ha feltételezzük, hogy egy adott magatartásforma adaptív értékként bírt őseink korai közösségeiben, ezzel a legkevéssé sem állítjuk azt, hogy ugyanez a magatartásforma erkölcsileg vagy politikailag elfogadható, vagy akár csak mentethető volna egy modern emberi kultúrában.

8. predikció. Végül hipotézisünk szerint az is várható, hogy a fertőzések terjesztése az emberi faj agresszív viselkedési repertoárjában is kimutatható legyen; így pl. a genetikailag nem-rokon emberszövetségek közti nagyléptékű agressziók – vagyis a háborúk – idején a fertőzések terjesztése rutinszerűen megjelenő viselkedésmódoknak bizonyuljon. Iskolai történelmi tanulmányainkra visszatekintve azonban úgy tűnhet, hogy ezt a predikciót látványosan hazudtulja meg a történelem. A hadtörténet rendkívül ritkán, sőt szinte sosem említi biológiai fegyvereként alkalmasztó kórokozókat.

A történelem türeke azonban terzíthat, és ennek több oka is lehet. Egyrészt az emberek érzelmi alapra elítéljük a biológiai fegyverek alkalmazását, míg az emberölésre szolgáló más fényveremeknek – pl. a kardvívásnak, légierőnek stb. – valóságos rajongótáborára van. Az ENSZ idevágó fegyverzetkorlátozási egyezménye, a Biológiai és Toxin Fegyver Egyezmény (ENSZ 1972) is éppen ezzel az általános érzelmi attitűddel indokolja a biológiai fegyverek globális tilalmát26, nem pedig azzal, hogy a biológiai fegyverek mondjuk több emberi szenvedést okoznának, mint pl. a légierő által megvalósítható népirtás. Reális lehet tehát azt feltételezni, hogy a politikai és katonai vezetők, mikor háborús eredményeiket megpróbálják egyfajta dicsőséges hőstettként elfogadhatni a hazai és nemzetközi közvéleménnyel, akkor az

26 célja „teljesen kizárni a bakteriológiai (biológiai) hatóanyagok és toxinok fegyverként való használatának lehetőségét” mert az „visszaszűrit” volna az emberiség telkiismerete számára.” (kiemelés tőlem)
eredményt biztosító eszköztár említése kapcsán túlhangsúlyozzák a társadalmilag elfogadottabb fegyverek, és szívesebben elhallgatják a biológiai fegyverek esetleges szerepét. Ugyanez a jelenség a nemzeti történetírás szintjén is jellemző lehet. Így pl. a magyar történetírás jellemzően azon a véleményen van, hogy Magyarország tömegpusztító fegyvereket sosem fejlesztett, és megfeledkezik a Magyar Királyi Honvédéség Egészségügyi Ellenőrző Állomásáról, mely valójában egy biológiai fegyverek fejlesztésére specializált intézmény volt 1938 és 1944 között Budapesten (Rózsa & Nixdorf 2005).

Másrészt a biológiai agresszió áldozata háborús helyzetben képtelen megkülönböztetni a háborúk idején érthető járványtani okokból különösképpen pusztító járványokat az ellenség által mesterségesen előidézett járványoktól.

Harmadrészt pedig e kétféle mechanizmus (a háborús helyzet által gerjesztett „spontán” járványok és a biológiai fegyverek által szándékosan okozott járványok) egymással jelentős részben átfed. A közelmúltig (nagyjából a II. világháborúval bezárólag) gyakorlatilag minden háborúban lényegesen több áldozatot szedtek a járványok, mint a fegyverek. A hadvezetés rendszerint ismerte ezt a tényt, tehát ha bárhol háborút indítottak, akkor ezt azzal a céllal tették, hogy a járványok és fegyverek – mint együttesen hatékony eszközök – által pusztítsák az ellenséget.

Konfliktus idején az ellenséges felek gyakran feltételeznek egymásról a ragályos kórokozók szándékos terjesztését, és gyakran fenyegetik meg egymást ezzel. Ezek az események meghökkentően gyakoriak és elterjedtek lehetnek. Így pl. 2001 őszén ismeretlen terrorista postai lépfene-spóra küldeményekkel támadta az USA egyes politikai- és média-szereplőit, 18-an megfertőződtek, közülük 5 ember meghalt. Az eseményt követő híradó-tudósítások világszerte elhíresztelték a biológiai fegyver „fehér por” jellegét. Közvetlenül ezután csak Magyarországon mintegy 1300 esetben
kellett riasztani a polgári védelmet fehér port (liszt, porcukor stb.) tartalmazó halálos fenyegető levelek miatt.

Végül a fenti jelenségek kapcsán szeretném hangsúlyozni két lényeges motívumot. Egyrészt a tapasztalati tényekkel szembesítve ezek a predikciók látszólag jobb összhangot mutatnak, mint a ma elterjedt manipulációs hipotézis, mely a paraziták terjesztése kapcsán kizárólag a paraziták adaptív érdekeit veszi figyelembe. Lényeges körülmény azonban, hogy a fenti jelenségek (predikciók) többségének vannak más, alternatív magyarázatai is, melyeket itt nem részletezem.

Másrészt szeretném kiemelni, hogy az emberi viselkedésre vonatkozó predikciók kapcsán a legkevésbé sem kívánom azt a látszatot kelteni, mintha a korai emberelődök körében esetleg kialakult egyes viselkedési motívumok (pl. idegengyűlőlet) adaptív jellege bármiféle felmentést vagy igazolást jelenthetne a mai modern társadalmakban esetleg megjelenő hasonló magatartásformák erkölcsi megítélésében.

4.1.8. Diszkusszió
A fenti érvek alapján úgy vélem tehát, hogy a fertőzési útvonalak jellege (véletlenszerű / rokonok felé / idegenek felé) nemcsak a kórokozók virulenciájának evolúcióját határozza meg, hanem egyúttal kihat a gazdaállatoknak a fertőzés esetleges továbbadásával kapcsolatos adaptív viselkedésére is. Ha a parazitáknak a gazda-viselkedés manipulálásában való érdeke mellett e hatást is figyelembe vesszük, akkor sokkal pontosabb predikciókat kapunk a fertőzött állatok várható viselkedéséről.

Sok parazita valóban meghökkentő mértékben manipulálja a gazda viselkedését, de legtöbbször olyan esetekben, mikor a gazda számára a manipuláció követni vagy annak ellenállni már semmilyen adaptációs előnyt vagy hátrányt nem jelent.

Máskor a gazdaállat kifejezetten érdekelte lehet a fertőzések továbbadásában, mert így a genetikailag távol álló fajtársait károsíthatja, és ez által közvetve a magához genetikailag hasonló rokonai hozzá előnyös helyzetbe. Ilyenkor a fertőzés továbbadásában ideiglenes érdekanonság vezérelte kollaboráció jöhet létre a gazdaállat és a benne élő paraziták között.

Azokban az esetekben, mikor az a gazda adaptív érdekeivel ellentétben állna, a virulens paraziták többnyire nem képesek manipulálni gazdáik viselkedését.
4.2. Irodalom

5. Összefoglalás

Értekezésem – az írott követelményeknek megfelelően – a kandidátusi dolgozatom megvédése után megjelent (vagy közlése elfogadott) publikációimon alapszik. E publikációk jelentős hányada társ szerzőkkel együttműködésben készült, de ahol lehetett (pl. matematikai és immunológiai részek esetében) ott a jelen értekezésben a társ szerzői által alkotott részeket leegyszerűsítettem vagy kihagytam. Sok ponton viszont nem hagyhattam ki teljes egészében a társ szerzői munkáját, mert anélkül a közös munka egészé is értelmezhetetlenné vált volna.

Értekezésem második része azon alapszik, hogy a tetvek – mint más ragályos kórokozóknál jobban „számlálható” lények – kiváló lehetőséget nyújtanak a statisztika epidemiológiai és parazita-ökológiai alkalmazására. E fejezetben egyrészt
kritikusan áttekintjük a statisztikai eljárások parazita-ökológiában való használatát, másrészt matematikus társzerzőmnek köszönhetően új megközelítéseket is javaslunk pl. a zsúfoltság és a sztochasztikus egyenlőség elemzése terén. A cikkeinkben javasolt új eljárások használatát egy felhasználóbarát és ingyenes szoftver segíti, amely ma már világszerte elterjedt a legkülönbözőbb parazita csoportok kutatásában.

Végül értekezésem utolsó fejezete a gazda-parazita kölcsönhatás evolúciós-ökológiai vonatkozásainak egy korábban ismeretlen motívumát foglalja össze. Itt az egyedi gazda-parazita kapcsolat utolsó szakaszában – miután a gazda képtelen volt elkerülni a fertőzést vagy kigyógyulni belőle – a gazda előtt álló döntési helyzetet elemeztem. Ilyenkor a gazdaállat vagy (1) megakadályozhatja a fertőzés fajtársai felé való továbbjutását, vagy (2) elősegítheti azt, vagy (3) lehet e szempontból inaktív, semleges szereplő. Megmutattam, hogy a gazda számára optimális az (1) viselkedés, ha a fertőzési útvonalak a véletlennél nagyobb eséllyel mutatnak genetikailag rokon fajtársak felé. Megfordítva, a gazda számára optimális a (2) viselkedés, ha a fertőzési útvonalak a véletlennél nagyobb eséllyel mutatnak genetikailag nem-rokon, „idegen” fajtársak felé. Végül, ha a fertőzési útvonalak a populáció belül véletlenszerűek, akkor gazda számára neutrális tulajdonság a fertőzések terjesztése vagy éppen annak akadályozása. Érveket hoztam fel amellett, hogy a gazda viselkedésének paraziták általi manipulációját akkor tehetjük hatékonyabb (pontosabb predikciókat eredményező) hipotézissé, ha a fertőzött gazda adaptív érdekeit is figyelembe vesszük.

A klasszikus epidemiológia a gazdaállatot (vagy embert) a fertőzéseket elszennveő, és azok ellen minden lehetséges módon védekező lénynek tekinti. Az itt vászolt elképzelés, ha többé-kevésbé igaznak bizonyul, alapvetően változtatja meg ezt az epidemiológiai nézetet, hiszen a fertőzött gazdát a kapcsolat utolsó szakaszában gyakran nem védekező, sőt, olykor a ragályos kórokozókkal együttműködő lényként interpretálja.
6. Köszönetnyilvánítás

Feleségem és gyermekeim nyugodt derűvel viselték különös hóbortnak tetsző tető- kutatói munkám következményeit, és megértő szavakkal fogadták tettvész kollégáim családtagjait is.

Kassai Tibor és Papp László professzor urak tették lehetővé, hogy közel két évtizeden át a parazita ökológia rejtelmeivel foglalkozhassak. Támogatásuk nélkül ma bizonyosan nem lehetnék a tudományos élet közelében.

Nemzetközi kapcsolataimban mindig számíthattam Steve C. Barker (Ausztrália), Dale H. Clayton (USA), Malcolm Dando (Nagy-Britannia), Robert Poulin (Új-Zéland), Mark Wheelis (USA) és mások önzetlen segítségére.

A könyvtárakban biztosan elvesztem volna Mácsay Ildikó, Orbán Éva és Büki József türelmes, szakszerű és hatékony segítsége nélkül.

Az adminisztrációs terheket Ricsóy Béláné vette le a vállamról.

Kutatásaim anyagi hátterét főként OTKA pályázataim (1/3 1367, F016792, T035150, T049157), a NATO Science Programme (Collaborative Linkage Grant) és a Széchenyi Professzori Ösztöndíj (1999-2002) biztosították.

Mindnyájuknak köszönhetet mondok fáradozásaikért.

Rózsa Lajos
7. Táblázatok

<table>
<thead>
<tr>
<th>Dolmányos varjú</th>
<th>N. fertőzött (prevalencia)</th>
<th>Imágó tetvek (N)</th>
<th>Ivar-arány</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myrsidea cornicis</td>
<td>26 (29 %)</td>
<td>178</td>
<td>0,27</td>
<td>0,001</td>
</tr>
<tr>
<td>Philopterus ocellatus</td>
<td>34 (38 %)</td>
<td>299</td>
<td>0,26</td>
<td>0,001</td>
</tr>
<tr>
<td>Brueelia uncinosa</td>
<td>4 (4 %)</td>
<td>8</td>
<td>~</td>
<td></td>
</tr>
<tr>
<td>Menacanthus eurysternus</td>
<td>7 (8 %)</td>
<td>18</td>
<td>~</td>
<td></td>
</tr>
<tr>
<td>Colpocephalum fregili</td>
<td>1 (1 %)</td>
<td>1</td>
<td>~</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vetési varjú</th>
<th>N. fertőzött (prevalencia)</th>
<th>Imágó tetvek (N)</th>
<th>Ivar-arány</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myrsidea isostoma</td>
<td>26 (70 %)</td>
<td>413</td>
<td>0,41</td>
<td>0,001</td>
</tr>
<tr>
<td>Philopterus atratus</td>
<td>22 (59 %)</td>
<td>369</td>
<td>0,39</td>
<td>0,001</td>
</tr>
<tr>
<td>Brueelia tasniamae</td>
<td>17 (46 %)</td>
<td>529</td>
<td>0,32</td>
<td>0,001</td>
</tr>
<tr>
<td>Menacanthus gonophaeus</td>
<td>3 (8 %)</td>
<td>15</td>
<td>~</td>
<td></td>
</tr>
<tr>
<td>Colpocephalum fregili</td>
<td>9 (24 %)</td>
<td>36</td>
<td>~</td>
<td></td>
</tr>
</tbody>
</table>

I. táblázat. A két varjúfaj tetű-fertőzöttségének alapadatai. Az utolsó oszlop (P) a tapasztalt ivararánynak az egyensúlyi értéktől (0,5) való eltérésére vonatkozik.
<table>
<thead>
<tr>
<th>Anas platyrhynchos</th>
<th>0 1 2 3 4 6 7 8 9 11 13 14 15 21 29 30 44 2363</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crassicornis</td>
<td>33 5 5 4 3 3 1 3 2 2 1 4 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Anatoecus</td>
<td>0 1 2 3 5 6 15 16 17 20 75 83</td>
</tr>
<tr>
<td>Dentatus</td>
<td>57 2 3 2 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Anatoecus</td>
<td>0 1 2 3 6 8 9 10 549</td>
</tr>
<tr>
<td>Trinoton</td>
<td>0 1 2 3 4 6 7 44</td>
</tr>
<tr>
<td>querquedulae</td>
<td>63 3 1 1 1 1 1</td>
</tr>
<tr>
<td>Trinoton</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>luridum</td>
<td>63 3 3 2 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scoplopa rusticola</th>
<th>0 1 2 3 4 5 7 8 9 10 13 14 15 16 29 30 38 40 66 68 75 276</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cummingsiella</td>
<td>0 1 2 3 4 5 7 8 9 10 11 12 13 14 16 20 22 29 47</td>
</tr>
<tr>
<td>aurea</td>
<td>67 3 3 1 5 5 1 1 2 2 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Rhynonimus</td>
<td>0 1 2 3 4 8 9 13 19 24 34 685</td>
</tr>
<tr>
<td>helvolus</td>
<td>82 2 1 2 3 2 2 2 2 1 2 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Streptopelia decaocto</th>
<th>0 1 2 3 4 5 6 7 8 9 10 12 13 14 22 32 33 35 36 58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbicola</td>
<td>0 1 2 3 4 5 6 7 8 9 10 12 13 14 16 20 22 29 47</td>
</tr>
<tr>
<td>bacillus</td>
<td>55 10 6 8 2 2 1 3 5 5 1 3 3 1 1 1 1 1</td>
</tr>
<tr>
<td>Coloceras</td>
<td>0 1 2 3 4 5 9 36</td>
</tr>
<tr>
<td>piageti</td>
<td>93 7 3 2 1 3 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corvus corone cornix</th>
<th>0 1 2 3 4 5 6 7 8 9 10 12 13 14 22 32 33 35 36 58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philopterus</td>
<td>0 1 2 3 4 5 6 7 8 9 10 12 13 14 22 32 33 35 36 58</td>
</tr>
<tr>
<td>ocellatus</td>
<td>50 4 2 3 1 6 2 1 2 2 4 3 2 1 1 1 1 1</td>
</tr>
<tr>
<td>Myrsidea</td>
<td>0 1 2 3 4 5 7 8 9 10 11 12 14 15 17 46 101</td>
</tr>
<tr>
<td>corniciis</td>
<td>60 5 1 2 1 2 3 3 1 1 3 1 2 1 1 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corvus frugilegus</th>
<th>0 1 2 3 4 5 6 7 8 9 10 11 14 18 20 23 30 32 40 44 62 197</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myrsidea</td>
<td>0 1 2 3 4 5 6 7 8 9 10 11 14 18 20 23 30 32 40 44 62 197</td>
</tr>
<tr>
<td>isostoma</td>
<td>11 2 2 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Philopterus</td>
<td>0 1 2 4 5 7 9 12 18 19 21 68 71 115 149</td>
</tr>
<tr>
<td>atratus</td>
<td>13 3 4 2 1 2 2 2 2 1 1 1 1 1</td>
</tr>
<tr>
<td>Brueelia</td>
<td>0 1 3 4 5 6 14 20 38 46 105 111 131 143</td>
</tr>
<tr>
<td>tasniamae</td>
<td>19 1 3 1 2 2 1 1 1 1 1 1</td>
</tr>
<tr>
<td>Colpocephalum</td>
<td>0 1 2 3 5 10 12</td>
</tr>
<tr>
<td>fregili</td>
<td>28 3 1 2 1 1 1</td>
</tr>
</tbody>
</table>

II. táblázat. Öt gazdafajról gyűjtött 15 tetűfaj tapasztalt eloszlásai. A sorok minden párában a felső sor a fertőzöttségi osztály (a tetvek egyedszáma), míg az alsó sor az ebbe az osztályba tartozó madarak egyedszáma. A nulla egyedszámmal jellemzett fertőzöttségi osztályokat kihagyott.
<table>
<thead>
<tr>
<th>Forrás</th>
<th>gazdafaj</th>
<th>N</th>
<th>Parazita faj</th>
<th>prev. %</th>
<th>átlagos abund.</th>
<th>abundancia variancija</th>
<th>k</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fowler & Miller 1984</td>
<td>Hydrobates pelagicus $</td>
<td>240</td>
<td>Halipeurus pelagicus</td>
<td>97,5</td>
<td>5,75</td>
<td>13,48</td>
<td>4,27</td>
<td>0,359</td>
</tr>
<tr>
<td></td>
<td>Fulmarus glacialis $</td>
<td>35</td>
<td>Perineus nigromeltanus</td>
<td>80</td>
<td>2,74</td>
<td>8,67</td>
<td>1,27</td>
<td>0,568</td>
</tr>
<tr>
<td>Fowler & Williams 1985</td>
<td>Emberiza schoeniclus $</td>
<td>213</td>
<td>Philopterus residuus</td>
<td>21,6</td>
<td>0,75</td>
<td>5,2</td>
<td>0,13</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111</td>
<td>Philopterus residuus</td>
<td>24,3</td>
<td>1,91</td>
<td>36,5</td>
<td>0,116</td>
<td>?</td>
</tr>
<tr>
<td>Fowler & Price 1987</td>
<td>Oceenites oceanicus $</td>
<td>102</td>
<td>Philoceanus robertsi</td>
<td>?</td>
<td>6,6</td>
<td>34,8</td>
<td>1,56</td>
<td>?</td>
</tr>
<tr>
<td>Fowler & Hodson 1988</td>
<td>Oceanodroma leucorhoa $</td>
<td>100</td>
<td>Halipeurus pelagicus</td>
<td>61</td>
<td>1,4</td>
<td>3,04</td>
<td>1,121</td>
<td>0,597</td>
</tr>
<tr>
<td>Fowler & Show 1989</td>
<td>Puffinus p. puffinus $</td>
<td>230</td>
<td>Trabeclus aviator</td>
<td>99,5</td>
<td>28,7</td>
<td>368,7</td>
<td>2,42</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>230</td>
<td>Halipeurus diversus</td>
<td>99,5</td>
<td>24,2</td>
<td>316,8</td>
<td>2,00</td>
<td>?</td>
</tr>
<tr>
<td>Fowler & Hodson 1991</td>
<td>Cinclus cinnclus $</td>
<td>50</td>
<td>Philopterus cinclis</td>
<td>54,0</td>
<td>1,6</td>
<td>9,76</td>
<td>0,314</td>
<td>0,743</td>
</tr>
<tr>
<td>Clark et al. 1994</td>
<td>Delichon urbica $</td>
<td>161</td>
<td>Brueelia gracilis</td>
<td>49</td>
<td>3,20</td>
<td>45,35</td>
<td>0,24</td>
<td>0,766</td>
</tr>
<tr>
<td>Lee & Clayton 1994</td>
<td>Apus apus $</td>
<td>87</td>
<td>Dennyus hirundinis</td>
<td>67,8</td>
<td>1,9</td>
<td>5,2</td>
<td>1,1</td>
<td>0,581</td>
</tr>
<tr>
<td>Potti & Merino 1995</td>
<td>Ficedula hypoleuca Anas</td>
<td>462</td>
<td>Philopterus capillatus</td>
<td>23,6</td>
<td>0,66</td>
<td>4,82</td>
<td>0,105$</td>
<td>0,901</td>
</tr>
<tr>
<td></td>
<td>platyrynchos $</td>
<td>72</td>
<td>Anaticola crassicomis</td>
<td>54,2</td>
<td>37,49</td>
<td>77306,24</td>
<td>0,31!</td>
<td>0,939</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>Anatocerus dentatus</td>
<td>20,8</td>
<td>3,49</td>
<td>181,71</td>
<td>0,07</td>
<td>0,916</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>Anatocerus icterodes</td>
<td>16,7</td>
<td>8,18</td>
<td>4180,92</td>
<td>0,07</td>
<td>0,965</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>Trinoton querqueudae</td>
<td>12,5</td>
<td>0,96</td>
<td>27,98</td>
<td>0,05</td>
<td>0,943</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>Trinoton luridum</td>
<td>12,5</td>
<td>0,26</td>
<td>0,62</td>
<td>0,11 $</td>
<td>0,895</td>
</tr>
<tr>
<td></td>
<td>Scolopax rusticola $</td>
<td>102</td>
<td>Cumminsiaella aurea</td>
<td>34,3</td>
<td>7,75</td>
<td>901,20</td>
<td>0,14!</td>
<td>0,887</td>
</tr>
<tr>
<td></td>
<td></td>
<td>102</td>
<td>Rhynonimus helvulus</td>
<td>19,6</td>
<td>8,79</td>
<td>4610,41</td>
<td>0,07</td>
<td>0,956</td>
</tr>
<tr>
<td></td>
<td>Streptopelia decaocto $</td>
<td>111</td>
<td>Columbicola bacillus</td>
<td>50,5</td>
<td>3,75</td>
<td>45,29</td>
<td>0,29!</td>
<td>0,734</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111</td>
<td>Coloceras piagetti</td>
<td>16,2</td>
<td>0,75</td>
<td>13,10</td>
<td>0,08</td>
<td>0,925</td>
</tr>
<tr>
<td></td>
<td>Corvus frugilegus $</td>
<td>37</td>
<td>Myrsidea isostoma</td>
<td>70,27</td>
<td>15,46</td>
<td>1151,24</td>
<td>0,51</td>
<td>0,722</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>Philopterus atratus</td>
<td>64,86</td>
<td>15,11</td>
<td>1075,84</td>
<td>0,40</td>
<td>0,773</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>Brueelia tasniamae</td>
<td>45,95</td>
<td>21,27</td>
<td>1916,69</td>
<td>0,23</td>
<td>0,759</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37</td>
<td>Colpocephalum fregili</td>
<td>24,32</td>
<td>1,03</td>
<td>7,08</td>
<td>0,13</td>
<td>0,848</td>
</tr>
<tr>
<td></td>
<td>Corvus corone cornix $</td>
<td>89</td>
<td>Myrsidea cornicis</td>
<td>32,58</td>
<td>3,85</td>
<td>147,87</td>
<td>0,14!</td>
<td>0,848</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89</td>
<td>Philopterus ocellatus</td>
<td>43,82</td>
<td>4,90</td>
<td>94,67</td>
<td>0,21!</td>
<td>0,771</td>
</tr>
</tbody>
</table>

III. táblázat. Az ismert tolltetű eloszlások leíró statisztikái. $: telepesen költő gazdafaj, ?: nincs adat, !: nem illeszkedik a negatív binomiális modellhez (P>0,05), §: nem volt illeszkedésvizsgálat.
<table>
<thead>
<tr>
<th>Gazdafaj</th>
<th>Szocialitás</th>
<th>tömeg (g)</th>
<th>N gazda</th>
<th>N tetű</th>
<th>Forrás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alauda arvensis</td>
<td>2</td>
<td>39,95</td>
<td>46</td>
<td>5</td>
<td>Blagoveshchensky (1951)</td>
</tr>
<tr>
<td>Apus apus</td>
<td>3</td>
<td>37,6</td>
<td>87</td>
<td>168</td>
<td>Lee & Clayton (1995)</td>
</tr>
<tr>
<td>Cinculus cincclus</td>
<td>1</td>
<td>59,8</td>
<td>50</td>
<td>93</td>
<td>Fowler & Hodson (1991)</td>
</tr>
<tr>
<td>C. coccothraustes</td>
<td>1,5</td>
<td>54</td>
<td>50</td>
<td>213</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Corvus frugilegus</td>
<td>3</td>
<td>488</td>
<td>139</td>
<td>6115</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Corvus monedula</td>
<td>2,5</td>
<td>246</td>
<td>113</td>
<td>667</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Delichon urbica</td>
<td>3</td>
<td>14,5</td>
<td>114</td>
<td>1485</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Dendrocopos major</td>
<td>1</td>
<td>81,6</td>
<td>68</td>
<td>329</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Emberiza citrinella</td>
<td>2</td>
<td>26,5</td>
<td>60</td>
<td>157</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Emberiza bruniceps</td>
<td>2</td>
<td>23,5</td>
<td>55</td>
<td>59</td>
<td>Blagoveshchensky (1951)</td>
</tr>
<tr>
<td>Emberiza schoeniclus</td>
<td>2</td>
<td>18,3</td>
<td>370</td>
<td>639</td>
<td>Fowler & Williams (1985), Blagoveshchensky (1951)</td>
</tr>
<tr>
<td>Fringilla coelebs</td>
<td>2</td>
<td>21,4</td>
<td>101</td>
<td>105</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Galerida cristata</td>
<td>1,5</td>
<td>40,45</td>
<td>198</td>
<td>1885</td>
<td>Blagoveshchensky (1951), Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Garrulus glandarius</td>
<td>1</td>
<td>161</td>
<td>115</td>
<td>1079</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Hydrobasites pelagicus</td>
<td>2,5</td>
<td>25,2</td>
<td>240</td>
<td>1395</td>
<td>Fowler & Miller (1984)</td>
</tr>
<tr>
<td>Lanius collurio</td>
<td>1</td>
<td>29,9</td>
<td>42</td>
<td>105</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Merops apiaster</td>
<td>3</td>
<td>56,6</td>
<td>41</td>
<td>649</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Oceanites oceanicus</td>
<td>2</td>
<td>32</td>
<td>61</td>
<td>404</td>
<td>Fowler & Price (1987)</td>
</tr>
<tr>
<td>Oceanodroma Leucorhoa</td>
<td>2</td>
<td>31,7</td>
<td>100</td>
<td>149</td>
<td>Fowler & Hodson (1988)</td>
</tr>
<tr>
<td>Passer domesticus</td>
<td>2,5</td>
<td>27,7</td>
<td>112</td>
<td>563</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Passer hispaniolensis</td>
<td>3</td>
<td>24,2</td>
<td>61</td>
<td>121</td>
<td>Blagoveshchensky (1951)</td>
</tr>
<tr>
<td>Passer montanus</td>
<td>2,5</td>
<td>22</td>
<td>131</td>
<td>177</td>
<td>Blagoveshchensky (1951), Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Phoenicurus erythronotus</td>
<td>1</td>
<td>18,5</td>
<td>47</td>
<td>74</td>
<td>Blagoveshchensky (1951)</td>
</tr>
<tr>
<td>Pica pica</td>
<td>1,5</td>
<td>177,5</td>
<td>107</td>
<td>1958</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Puffinus puffinus</td>
<td>3</td>
<td>453</td>
<td>230</td>
<td>12298</td>
<td>Fowler & Shaw (1989)</td>
</tr>
<tr>
<td>Riparia riparia</td>
<td>3</td>
<td>14,6</td>
<td>169</td>
<td>225</td>
<td>Balát (1966), Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Sitta europaea</td>
<td>1</td>
<td>22</td>
<td>41</td>
<td>0</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Stereopelia decaocto</td>
<td>2</td>
<td>149</td>
<td>43</td>
<td>195</td>
<td>Cerny (1970)</td>
</tr>
<tr>
<td>Stereopelia hurtur</td>
<td>1</td>
<td>132</td>
<td>64</td>
<td>475</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Sturnus roseus</td>
<td>3</td>
<td>66,5</td>
<td>42</td>
<td>163</td>
<td>Blagoveshchensky (1951)</td>
</tr>
<tr>
<td>Sturnus vulgaris</td>
<td>2,5</td>
<td>82,3</td>
<td>264</td>
<td>2187</td>
<td>Blagoveshchensky (1951), Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Turdus merula</td>
<td>1,5</td>
<td>113</td>
<td>92</td>
<td>1818</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Turdus philomelos</td>
<td>1</td>
<td>67,75</td>
<td>69</td>
<td>360</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Turdus pilaris</td>
<td>2,5</td>
<td>106</td>
<td>43</td>
<td>617</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
<tr>
<td>Turdus viscivorus</td>
<td>1,5</td>
<td>115</td>
<td>40</td>
<td>551</td>
<td>Shumilo & Lunkashu (1972)</td>
</tr>
</tbody>
</table>

IV. táblázat. A dolgozatban felhasznált adatok összefoglalása és a fertőzöttségi adatok forrásai.
<table>
<thead>
<tr>
<th>Változó</th>
<th>átlag</th>
<th>S. E.</th>
<th>Medián</th>
<th>terjedelem</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amblycera átl. abundancia</td>
<td>2,278</td>
<td>0,898</td>
<td>0,409</td>
<td>0-18,56</td>
<td>23</td>
</tr>
<tr>
<td>Ischnocera átl. abundancia</td>
<td>6,541</td>
<td>1,650</td>
<td>1,370</td>
<td>0-27,39</td>
<td>23</td>
</tr>
<tr>
<td>Amblycera génuszok száma</td>
<td>1,713</td>
<td>0,113</td>
<td>2</td>
<td>0-4</td>
<td>80</td>
</tr>
<tr>
<td>Ischnocera génuszok száma</td>
<td>1,713</td>
<td>0,089</td>
<td>2</td>
<td>0-4</td>
<td>80</td>
</tr>
</tbody>
</table>

Ivararány

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivari testméret dimorfizmus</td>
<td>97</td>
<td>0,2443</td>
<td>NS 0,0159</td>
</tr>
<tr>
<td>Nőstény genitália méret</td>
<td>85</td>
<td>0,3883</td>
<td>0,0002</td>
</tr>
<tr>
<td>Nőst. genitália strukturális komplexitása</td>
<td>97</td>
<td>0,3692</td>
<td>0,0002</td>
</tr>
<tr>
<td>Hím genitália méret</td>
<td>97</td>
<td>0,2968</td>
<td>0,0032</td>
</tr>
<tr>
<td>Hím genitália strukturális komplexitása</td>
<td>97</td>
<td>0,3514</td>
<td>0,0004</td>
</tr>
<tr>
<td>Hím fogószerv mérete</td>
<td>89</td>
<td>0,2367</td>
<td>NS 0,0256</td>
</tr>
<tr>
<td>Hím fogószerv strukturális komplexitása</td>
<td>97</td>
<td>0,3485</td>
<td>0,0005</td>
</tr>
</tbody>
</table>

Átlagos intenzitás

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivararány</td>
<td>97</td>
<td>0,3338</td>
<td>0,0008</td>
</tr>
<tr>
<td>Ivari testméret dimorfizmus</td>
<td>97</td>
<td>0,2072</td>
<td>NS 0,0417</td>
</tr>
<tr>
<td>Nőstény genitália méret</td>
<td>85</td>
<td>0,2772</td>
<td>NS 0,0102</td>
</tr>
<tr>
<td>Nőst. genitália strukturális komplexitása</td>
<td>97</td>
<td>0,5291</td>
<td><0,0001</td>
</tr>
<tr>
<td>Hím genitália méret</td>
<td>97</td>
<td>0,2038</td>
<td>NS 0,0453</td>
</tr>
<tr>
<td>Hím genitália strukturális komplexitása</td>
<td>97</td>
<td>0,2558</td>
<td>NS 0,0114</td>
</tr>
<tr>
<td>Hím fogószerv mérete</td>
<td>89</td>
<td>0,3397</td>
<td>0,0011</td>
</tr>
<tr>
<td>Hím fogószerv strukturális komplexitása</td>
<td>97</td>
<td>0,4693</td>
<td><0,0001</td>
</tr>
</tbody>
</table>

VI. táblázat. Az ivararány, átlagos intenzitás, és a spermakompétícióval kapcsolatos morfológiai bélyegek kovariációja szörtetű (al-)fajok közti összehasonlításban. NS: nem szignifikáns a Bonferroni korrekció után (Bonferroni $\alpha' = 0,0034$) (Sokal & Rohlf 1995). Mind a 15 korreláció iránya megfelel a spermakompétíció hipotézis által prediktált iránynak (egymástól független, véletlen irányú korrelációkat feltételezve ennek esélye P<0,00001). Filogenetikai kontrollt nem végeztünk.