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Abstract Antagonistic host-parasite interactions lead to
coevolution of host defenses and parasite virulence.
Such adaptation by parasites to host defenses may occur
to the detriment of the ability of parasites to exploit
alternative hosts, causing parasite specialization and
speciation. We investigated the relationship between le-
vel of anti-parasite defense in hosts and taxonomic
richness of two chewing louse suborders (Phthiraptera:
Amblycera, Ischnocera) on birds. While Amblyceran lice
tend to occur in contact with host skin, feed on host skin
and chew emerging tips of developing feathers to obtain
blood, Ischnoceran lice live on feathers and feed on the
non-living keratin of feather barbules. We hypothesized
that Amblyceran abundance and richness would have
evolved in response to interaction with the immune
system of the host, while Ischnoceran taxonomic rich-
ness would have evolved independently of immunolog-
ical constraints. In an interspecific comparison, the
abundance of Ischnocerans was positively related to host
body size, while host body mass and Ischnoceran taxo-
nomic richness accounted for the abundance of Am-
blycerans. Amblyceran taxonomic richness was
predicted by the intensity of T-cell mediated immune
response of nestling hosts, while the T-cell response of
adults had no significant effect. In contrast, Ischnoceran

taxonomic richness was not predicted by host T-cell
responses. These results suggest that the taxonomic
richness of different parasite taxa is influenced by dif-
ferent host defenses, and they are consistent with the
hypothesis that increasing host allocation to immune
defense increases Amblyceran biodiversity.

Keywords Amblycera Æ Immunity Æ Ischnocera Æ
Parasites Æ Species diversity

Introduction

Parasites constitute a very large proportion of extant
species (Price 1980). A major factor contributing to this
explanation is that parasites by definition acquire some
or all of their resources from living organisms. Common
means of avoiding or reducing parasitism include
behavioral, mechanical and physiological defenses (e.g.
Hart 1990, 1997; Klein 1990; Wakelin 1996). Why has
the ability to exploit the resources of other individuals
become the main means of resource acquisition among
living organisms? The main answer lies in the observa-
tion that parasite exploitation, host defense and new
means of parasite attack are the outcome of aggressive
coevolutionary interactions. Strict coevolution between
two or few interacting players is more likely to result in
specialization and speciation than diffuse coevolution
among many different species (Thompson 1994). Thus,
coevolutionary theory predicts positive covariation be-
tween levels of defense, specialization and speciation.

Lice (Phthiraptera) are the only parasitic insects that
complete their entire life cycle upon the body surface of
birds showing low levels of pathogenicity (Clayton and
Tompkins 1994, 1995). However, lice still influence
major aspects of avian life history such as flight per-
formance (Barbosa et al. 2002), metabolism (Booth et al.
1993), life expectancy (Brown et al. 1995; Clayton et al.
1999) and sexual selection (Clayton 1990; Kose and
Møller 1999; Kose et al. 2000). It still seems likely that
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parasites other than lice have imposed more important
selection pressures on birds than have lice.

Species richness of avian parasites is known to covary
with host body size, range size, habitat and phylogeny
(Gregory 1997). However, there is much less knowledge
about factors influencing species richness of avian lice in
particular. Host body size tended to covary positively
with louse species richness across host species (Roths-
child and Clay 1952). Moreover, past bottlenecks in host
population size are known to cause long-lasting de-
creases in louse richness (Rózsa 1993a; Paterson et al.
1999). Clayton and Walther (2001) showed an interac-
tion between the fine structure of bill tip and louse
abundance. Since preening by the bill tip plays a major
role in avian defense against lice (Clayton 1991), this
result indicates that measures of host defenses may co-
vary with measures of lousiness in birds.

Here, we test whether the richness and abundance of
avian lice have evolved in response to interaction with
host immune system. We differentiate between two sub-
orders of lice occurring on birds: Ischnocera and Am-
blycera. As indicated by recent molecular analyses
(Johnson and Whiting 2002; Barker et al. 2002), ‘‘chew-
ing lice (Mallophaga)’’ is a paraphyletic taxon, consisting
of two major taxa (Johnson and Clayton 2003). Isch-
noceran lice live on feather surfaces and tend to graze the
non-living keratin of feather barbules. Typically, they
have no direct contact with living host tissues, with the
exceptions of the preening bill and grooming foot, as host
mechanical defenses. In contrast, most Amblycerans tend
to walk directly on the host skin, often feed on the
excretions and fragments of the skin, and also chew the
emerging tips of developing feathers to obtain blood.
They may even serve as intermediate hosts of avian
microfilarial worms indicating a high frequency of blood
feeding (Cohen et al. 1991), which is exceptional among
Ischnocerans (but see Barlett 1993). Amblycerans are
also more likely to defecate directly onto host skin, while
the feces of Ischnoceran lice is less likely to get in contact
with host skin. Thus, we expect the avian immune re-
sponse to interact with Amblyceran infections, while Is-
chnocerans should evolve more independently of
immunological constraints.

As a measure of immune response, we used a standard
measure of T-cell mediated immune response to subcu-
taneous challenge of nestlings at a standardized age with
a novel mitogen (phytohemagglutinin). Bird species that
suffer from intense parasite-induced nestling mortality
have evolved stronger cell-mediated immune responses
than species with little or no mortality (Martin et al.
2001). T-cell response based on this test is also a reliable
predictor of survival in several studies of birds (Møller
and Saino 2004). We used mean abundance (the number
of lice divided by the number of birds) and taxonomic
richness as measures to quantify ‘‘typical levels’’ of
Amblyceran and Ischnoceran burdens of different bird
species (Rózsa et al. 2000). These measures are not fully
independent; taxonomically richer louse burdens tend to
be more abundant as well (Clayton and Walther 2001).

Materials and methods

Host species included

We included all species for which information on T-cell
mediated immune response had been published by 31
December 2003 (Casto et al. 2001; Ewenson et al. 2001;
Hoi-Leitner et al. 2001; Johnsen et al. 2000; Smits et al.
1999; Soler et al. 1999;Tella et al. 2000, 2002), or forwhich
we or our collaborators had recorded responses to the
phytohemagglutinin test (Blount et al. 2003 and the
remaining species).Weonly includedaltricial host species.

T-cell mediated immune response

During 2000–2002, the first author spent large parts of
April–June for searching nests of birds, in which nes-
tlings could be tested for cell-mediated immune response
in Southern Spain around Granada and Sierra Nevada
and in Northern Denmark. We used the T-cell mediated
immune response to a challenge with phytohemaggluti-
nin (Goto et al. 1978; McCorkle et al. 1980; Parmentier
et al. 1993; Dietert et al. 1996). Injection with phytohe-
magglutinin results in local activation and proliferation
of T-cells, followed by local recruitment of inflammatory
cells and increased expression of major histocompati-
bility complex molecules (Goto et al. 1978; Abbas et al.
1994; Parmentier et al. 1998). Before injection, we re-
moved the feathers from a small spot of skin on the wing
web (patagium) of the right and the left wings and
marked the sites of injection with a permanent, water-
resistant color marker. Then, we measured the thickness
of the skin to the nearest 0.01 mm with a pressure-sen-
sitive caliper (Teclock SM112). For each wing web we
made three measurements to quantify measurement er-
ror. We found repeatabilities above 0.95. Subsequently,
we injected 0.02 mg phytohemagglutinin dissolved in
0.04 ml saline in one wing web, and 0.04 ml physiolog-
ical water in the other wing web. Approximately 24 h
later, we remeasured the thickness of the skin at the two
sites of injection, as described above. The index of cell-
mediated immune response was simply calculated as the
difference in thickness of the wing web injected with
phytohemagglutinin 24 h after and just before injection,
minus the difference in thickness of the wing web in-
jected with physiological water. We calculated mean
responses for each brood and then calculated an overall
mean based on these brood mean values. The full data
set is provided in the electronic appendix.

We have found highly significant, consistent differ-
ences in cell-mediated immune response in nestlings
among species (63.4% of the variance among species:
F = 18.55, df = 41, 371, P < 0.001, data from Den-
mark 2001, Møller et al. 2003). Furthermore, we
have found for 18 species with mean estimates available
from both Spain and Denmark that there is significantly
more variation among than within species in mean
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cell-mediated immune response (82.7% of the variance
among species: one-way ANOVA: F = 11.94, df = 17,
18, P < 0.001, Møller et al. 2003). Nestlings were in-
jected at a standard relative age during their ontogeny
(when they were two-thirds through their normal nest-
ling period) rather than at a similar absolute age. This
procedure ensured that nestlings were tested at a similar
developmental stage, which excludes the possibility that
the recorded responses are dependent on developmental
age. Studies of age-dependent cell-mediated immunity in
barn swallow Hirundo rustica nestlings have shown little
variation in intensity of response during the period 10–
16 days (in a species with a 20 days nestling period)
(Møller et al. 2003).

A thorough characterization of immunocompetence
(the ability to raise an efficient response to a parasite
attack) requires that both T- and B-cell-mediated and
innate immunity are quantified (National Research
Council 1992). However, we suggest that a single mea-
sure recorded in a standardized way across a range of
species is superior to no measure at all. Furthermore, we
note that at the interspecific level T-cell mediated im-
mune response is positively correlated with antibody
production to a challenge with sheep red blood cells
(Møller et al. 2001).

Mean abundance and taxonomic richness
of Amblycerans and Ischnocerans

Mean abundance of the two louse suborders were
quantified by adding the number of lice belonging to
different species and dividing it by the number of hosts
examined. This approach means that we treat louse
suborders as different ecological guilds and we calculate
the mean abundance of these two guilds rather than that
of each louse species. Sample size does not bias the ex-
pected value of mean abundance, although its variability
increases dramatically at low sample sizes due to ran-
dom noise (Rózsa et al. 2000). To reduce noise, we only
used species with 35 or more individuals (an arbitrary
limit) sampled quantitatively for lice. Abundance data
were available for 23 bird species from Balát (1966),
Blagoveshchensky (1951), Cerny (1970), Fowler and
Wlilliams (1985), Lee and Clayton (1995), Rózsa (1990),
Rózsa et al. (1996), and Shumilo and Lunkashu (1972).

Widely distributed bird species often host congeneric
louse species each restricted to different non-overlapping
parts of the host distribution thus exhibiting an allo-
patric distribution. Thus, parasite species richness of
widely distributed bird species would overestimate the
true parasite richness that each local bird population has
to face (Clay 1964). Therefore, we used genera richness
rather than species richness to quantify the taxonomic
richness of Amblycerans and Ischnocerans harbored by
different bird species. This procedure also partly resolves
the problem that species richness would provide an in-
flated estimate due to uncertainty of the status of mor-
pho-species. The number of louse genera was obtained

from Price et al. (2003), Hackmann (1994) and Burley
et al. (1991) for 80 bird species.

Host sampling intensity affects number of known
parasite taxa, but not mean abundance (Gregory 1990;
Walther et al. 1995). Therefore, we also quantified the
intensity of parasitological surveys focused on different
bird species. For this purpose, we used a computerized
database on biological literature published by the Centre
for Agriculture and Biosciences International (CABI).
The number of hits on host scientific name mentioned
with any of the terms ‘‘parasit*’’, ‘‘pathogen*’’, ‘‘hel-
minth*’’, ‘‘mite*’’, ‘‘louse’’, ‘‘lice’’ was used to assess
parasitological study intensity (where ‘‘*’’ acts as a
truncation sign). Only hits from the titles and abstracts
were recorded, and the time range was limited to Janu-
ary 1984–2002. The number of hits ranged from 0 to 72.
Body mass for hosts was obtained from our own field
measurements or from Dunning (1993).

Statistical methods

Information on abundance and genera richness of lice,
and on T-cell response of nestling and adult hosts was
not available for all bird species, and sample sizes
therefore differ among analyses. Abundance of Ambly-
cera and Ischnocera, cell-mediated immune response
and body mass were log10-transformed and study
intensity was log10(x+ 1)-transformed before analysis to
achieve distributions that did not differ significantly
from normal distributions. We set the significance level
at 5%. All values reported are means (SE in parenthe-
ses).

Using log-transformed body mass as a covariate in
the analyses, we controlled for allometry effects of cell-
mediated immune responses. Across species we found a
significant positive relationship between log10-trans-
formed immune response and log10-transformed body
mass (F = 25.03, df = 1, 60, r2 = 0.29, P < 0.0001,
slope (SE) = 0.26 (0.05)). However, a similar regression
between log10-transformed immune response and log10-
transformed skin thickness before injection was not
significant (F = 2.25, df=1, 60, r2 = 0.05, P = 0.08,
slope (SE) = 0.20 (0.13)). A multiple linear regression
with log10-transformed immune response as the depen-
dent variable and log10-transformed body mass and
log10-transformed skin thickness before injection as
independent variables revealed a significant partial
regression coefficient only for body mass, but not for
skin thickness (F = 11.14, df = 2, 59, r2 = 0.35,
P < 0.0001, slope (SE) for body mass = 0.35 (0.08), t
= 4.37, P < 0.0001; slope (SE) for skin thickness =
0.04 (0.12), t = 0.37, P = 0.72). Use of log10-trans-
formed body mass thus corrects efficiently for interspe-
cific differences in body size without causing any bias
due to initial thickness of skin among species.

Phenotypic mean values for species cannot be con-
sidered statistically independent observations because
cases of convergent evolution are mixed with cases of
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similarity due to common ancestry, and, therefore, we
calculated statistically independent linear contrasts for
each variable according to the method developed by
Felsenstein (1985).

We used a composite phylogeny based on informa-
tion in Sibley and Ahlquist (1990) and Barker et al.
(2001) for families and orders, combined with informa-
tion in Badyaev (1997), Blondel et al. (1996), Cibois and
Pasquet (1999), Leisler et al. (1997), Martin and Clobert
(1996), Møller et al. (2001), Sheldon and Winkler (1993)
and Seibold and Helbig (1995).

We adopted the software CAIC to make the calcu-
lations of contrasts (Purvis and Rambaut 1995). All
branches were assigned the same length, although a
second set of analyses based on uneven branch lengths,
assuming a gradual evolution model as implemented in
the software by Purvis and Rambaut (1995), produced
qualitatively similar results (details not shown). We
tested for violations of statistical assumptions by
regressing standardized contrasts against their standard
deviations (Garland et al. 1992). None of these tests
revealed any significant deviations, after Bonferroni
adjustment for multiple tests. Contrasts with extreme
residuals were deleted from analyses to test for robust-
ness of results, and this did not change any of the con-
clusions presented here. Similarly, tests using ranked
independent variables in cases with extreme residuals did
not produce qualitatively different results. Contrasts
were analyzed by forcing regressions through the origin,
as recommended by Purvis and Rambaut (1995).

Results

Mean abundance and genera richness
in the two sub-orders of lice

Amblycerans were almost three times more abundant
than Ischnocerans) (Table 1,). Most bird species harbor
a very few louse genera with the median being 2 for both
Amblycerans and Ischnocerans. The number of Am-
blyceran genera was positively correlated with the
number of Ischnoceran genera across host species
(Pearson r = 0.37, t = 3.49, df = 78, P = 0.0008), also
when the analysis was based on contrasts (F = 7.42, df
= 1,77, r2 = 0.09, P= 0.008). Excluding extreme values
exceeding ±1.96 SD did not change this conclusion (F
= 5.14, df = 1,72, r2 = 0.07, P = 0.03). Host species

with high mean abundance of Amblycerans also had
high mean abundance of Ischnocerans (Pearson r =
0.64, t = 3.81, df = 21, P = 0.001; contrasts: F = 5.56,
df = 1,21, r2 = 0.21, P = 0.03). Excluding extreme
values exceeding ±1.96 SD did not change this con-
clusion (F = 21.70, df = 1,19, r2 = 0.53, P = 0.0002).

The numbers of Amblyceran and Ischnoceran genera
were only weakly related to study intensity, accounting
for a maximum of 13% of the variance (Amblyceran
genera richness and study intensity: Pearson r = 0.35, t
= 3.35, df = 78, P = 0.001; Ischnoceran genera rich-
ness: Pearson r = 0.34, t = 3.24, df = 78, P = 0.002).

Mean abundance of Ischnocerans was not signifi-
cantly correlated with Ischnoceran genera richness (after
controlling for host body mass, study intensity and
sample size: Pearson r = �0.09, t = 0.50, df = 21, P =
0.63), also when the analyses were based on contrasts (F
= 5.05, df = 4,18, r2 = 0.53, P = 0.007; partial
regression for Ischnoceran genera richness: slope (SE) =
�0.04 (0.15), t = 0.27, P = 0.79). Including Amblyc-
eran genera richness as yet another independent variable
revealed a stepwise linear regression model that only
included host body mass as a significant predictor of the
abundance of Ischnocerans (Fig. 1a; analysis based on

Fig. 1 a Mean abundance of Ischnoceran lice in relation to body
mass of the host and b mean abundance of Amblyceran lice in
relation to number of genera of Ischnocera. Each data point
represents a host species. Note that the y-axis in a and b and the x-
axis in a are logarithmic

Table 1 Descriptive statistics of mean abundances of Amblyceran
and Ischnoceran lice measured across bird species

Variable Mean SE Median Range N

Mean abundance of Amblycera 2.28 0.90 0.41 0–18.56 23
Mean abundance of Ischnocera 6.54 1.65 1.37 0–27.39 23
No. of genera of Amblycera 1.71 0.11 2 0–4 80
No. of genera of Ischnocera 1.71 0.09 2 0–4 80

N is number of host species
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contrasts: F = 19.72, df = 1,21, r2 = 0.48, P = 0.0002,
slope (SE) = 1.32 (0.30)). Mean abundance of Am-
blycerans was not significantly correlated with Am-
blyceran genera richness (after controlling for host body
mass, study intensity and sample size: Pearson r =
�0.20, t= 1.05, df = 21, P= 0.31), and this correlation
was not significant when based on contrasts (F = 1.99,
df = 4,18, r2 = 0.31, P = 0.14; partial regression for
Amblyceran genera richness: slope (SE) = 0.12 (0.08), t
= 1.48, P = 0.16)). Including Ischnoceran genera
richness as yet another independent variable revealed a
linear regression model that only included Ischnoceran
genera richness and host body mass as significant pre-
dictors of abundance of Amblycerans (Fig. 1b; analysis
based on contrasts: F = 4.47, df = 5,17, r2 = 0.57, P =
0.009, Ischnoceran genera richness: slope (SE) = �0.30
(0.09), t = 3.20, P = 0.005; body mass: slope (SE) =
0.99 (0.31), t = 3.21, P = 0.005).

Richness of louse genera and host T-cell response

Amblyceran genera richness increased significantly with
increasing magnitude of nestling T-cell mediated
immunity (Fig. 2a; F = 12.36, df = 1,56, r2 = 0.18, P
= 0.0009, slope (SE) = 1.60 (0.46)), while there was no
positive relationship for Ischnoceran genera richness

(Fig. 2b; F = 1.53, df = 1,56, r2 = 0.03, P = 0.22).
Statistical analyses based on standardized linear con-
trasts revealed that Amblyceran genera richness also
increased significantly with nestling T-cell response
(Fig. 2c; linear regression: F = 13.30, df = 1,55, r2 =
0.18, P = 0.0006, slope (SE) = 2.37 (0.65)). This rela-
tionship was not confounded by any extreme values
since regressions based on ranks provided very similar
results. Exclusion of an extreme negative value for
number of Amblyceran genera (Fig. 2c, bottom left)
only strengthened the relationship (F = 15.54, df =
1,54, r2 = 0.22, P = 0.0002, slope (SE) = 2.45 (0.62)).
Similarly, the lack of a significant relationship between
Ischnoceran genera richness and nestling T-cell response
was confirmed by the analysis of linear contrasts
(Fig. 2d; linear regression forced through the origin: F
= 0.01, df = 1,55, r2 = 0.00, P = 0.91).

We included the measure of study intensity, the origin
of the T-cell data (whether the data originated from wild
or captive birds), and body mass as potentially con-
founding variables in a multiple linear regression based
on linear contrasts. The overall multiple regression
model for contrasts of Amblyceran genera richness was
statistically significant (F = 9.78, df = 3,57, r2 = 0.34,
P < 0.0001). Amblyceran genera richness was still sig-
nificantly positively correlated with nestling T-cell
response (slope (SE) = 1.15 (0.49), t = 2.35, P = 0.02).

Fig. 2 Number of genera of
Amblycera (a) and Ischnocera
(b) in relation to T-cell
mediated immune response
(mm) of nestling birds.
Contrasts in the number of
genera of Amblycera (c) and
Ischnocera (d) in relation to
contrasts in T-cell mediated
immune response (mm) of
nestling birds. Note that the x-
axes in a and b are logarithmic
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Likewise the overall multiple regression model for con-
trasts of Ischnoceran genera richness was statistically
significant (F = 4.92, df = 3,57, r2 = 0.21, P = 0.004).
However, Ischnoceran genera richness was not signifi-
cantly correlated with nestling T-cell response (slope
(SE) = 0.45 (0.41), t = 1.09, P = 0.279).

Although nestling and adult T-cell response were
positively correlated (Pearson r = 0.60, t = 4.06, df =
30, P = 0.003), we determined the importance of age-
specific immunity by determining the relationship be-
tween louse genera richness (dependent variable) and
nestling and adult T-cell response. The overall multiple
regression model for Amblycerans was statistically sig-
nificant (linear regression forced through the origin: F=
5.54, df = 4,40, r2 = 0.35, P = 0.001). Amblyceran
genera richness was still significantly positively corre-
lated with nestling T-cell response (Fig. 3a; slope (SE) =
1.21 (0.62), t = 2.00, P = 0.04), while the relationship
with adult T-cell response was not significant (slope (SE)
= �0.72 (0.80), t = 0.90, P = 0.37). This relationship
was not confounded by any extreme values since
regressions based on ranks provided very similar results.
Exclusion of an extreme negative value for number of
Amblyceran genera (Fig. 3a, bottom left) did not affect
the relationship (F = 3.01, df = 4,39, r2 = 0.24, P =
0.003). The overall multiple regression model for

Ischnoceran genera richness was statistically significant
(F = 4.42, df = 4,40, r2 = 0.31, P = 0.005). Amblyc-
eran genera richness was still significantly positively
correlated with nestling T-cell response (slope (SE) =
1.21 (0.60), t = 2.01, P = 0.04), while the relationship
with adult T-cell response was not significant (slope (SE)
= �0.92 (0.81), t= 1.15, P= 0.26). Ischnoceran genera
richness was not significantly correlated with nestling T-
cell response (Fig. 3b; slope (SE) = �0.17 (0.45), t =
0.38, P= 0.70), or with adult T-cell response (slope (SE)
= 0.32 (0.58), t = 0.56, P = 0.61). Thus, the number of
genera of Amblyceran lice increased with increasing T-
cell response of nestlings, but showed no significant
relationship with T-cell response of adult hosts.

Discussion

Amblyceran genera richness increased with the strength
of cell-mediated immune response of their nestling hosts,
while that was not the case for Ischnoceran lice. This
study is the first to suggest a relationship between Am-
blyceran louse richness and avian immune response.
This raises the question whether birds control the Am-
blyceran lice by means of T-cell mediated immune re-
sponses. It is also the first study of any group of parasitic
organisms showing a relationship between taxonomic
richness and levels of host defense. In our study Isch-
nocerans served as a natural control group because this
sub-order does not interact with hosts at the sub-epi-
dermal level, contrary to what is the case for Amblyc-
erans. We found no relationship between host immune
response and richness of this control group, as predicted.
Presuming that the relationship between Amblyceran
genera richness and T-cell mediated immune response is
due to a direct interaction between hosts and parasites,
one can argue that large Amblyceran richness also select
for increased investment in T-cell mediated immune re-
sponses of avian hosts. However, an opposite direction
of causality cannot be excluded; we hypothesize that
strong host immune responses select for specialization
and hence diversification in Amblyceran lice. Hosts may
have evolved strong immune responses due to interac-
tions with other, more virulent parasites, and subse-
quently acquired a more diverse assemblage of
Amblycerans. These two hypotheses are not mutually
exclusive, and our results do not allow us to test the
direction of causality. However, we hypothesize that the
latter direction of causality appears to be more likely; i.e.
Amblyceran richness evolved in response to efficient
host defenses that had evolved during interactions with
other, more virulent parasites.

Factors other than host immunity also account for
interspecific differences in parasite taxonomic diversity.
Previous studies have suggested that size, density and
age of the host population can be important determi-
nants of parasite richness (Dritschilo et al. 1975; Strong
et al. 1977; Gregory 1990; Ebert et al. 2001). This pos-
sibility does not detract from the general interest of our

Fig. 3 Contrasts in number of genera of Amblycerans (a) and
number of genera of Ischnocerans (b) in relation to contrasts in T-
cell mediated immune response of nestlings after controlling for
contrasts in adult T-cell mediated immune response
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study since we found clear differences in patterns of
richness of Ischnoceran and Amblyceran lice that cannot
be accounted for by any of these factors, since the same
assemblage of hosts was investigated for the two sub-
orders of parasites.

Not only the magnitude, but also the timing of par-
ticular immune reactions within the host life cycle is rel-
evant for their parasites. Lice are often claimed to bemore
heavily dependent on the parent-offspring transmission
route than other avian ectoparasites (see e.g. Clayton and
Tompkins 1994, 1995 and references therein). Since par-
asites are most vulnerable at the invasion of a new host
individual and the foundation of a new population there,
we propose that the above claim is further supported by
our present results. We demonstrated a positive covaria-
tion of Amblyceran richness with the nestling immune
responses, while no similar relationship appears to exist
with the adult immune responses.

The positive correlation between louse abundance
and taxonomic richness was already known from pre-
vious studies (Clayton and Walther 2001). However, our
present results suggest that it is not abundance and
richness of lice in general, but Amblyceran abundance
that correlates positively with Ischnoceran taxonomic
richness. This finding points at a particular shortcoming
of most former ecological analyses on louse assem-
blages; authors typically do not differentiate between
suborders of lice, rather they treat lice as a homogeneous
ecological guild (but see Clayton et al. (1992) for an
exception).

Previous experimental studies repeatedly showed that
the size of avian louse burdens is effectively limited by
host mechanical defenses (Clayton 1991; Rózsa 1993b;
Clayton et al. 1999). While we do not doubt that
mechanical defenses also affect Amblyceran lice, we note
that these experiments were focused on Ischnocerans,
and it remains unknown to what extent this result is
valid for Amblycerans. Our results indicate that Am-
blycerans coevolve with the avian immune system.
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Rózsa L (1993a) Speciation patterns of ectoparasites and ‘‘strag-
gling’’ lice. Int J Parasitol 23:859–864
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