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Abstract. In ecology, diversity is often measured as the mean rarity of species in a community. In behavioral
sciences and parasitology, mean crowding is the size of the group to which a typical individual belongs. In this
paper, focusing mostly on the mathematical aspect, we demonstrate that diversity and crowding are closely
related notions. We show that mean crowding can be transformed into diversity and vice versa. Based on this
general equivalence rule, notions, relationships, and methods developed in one field can be adapted to the other
one. In relation to crowding, we introduce the notion “effective number of groups” that corresponds to the “effec-
tive number of species” used in diversity studies.We define new aggregation indices that mirror evenness indices
known from diversity theory. We also construct aggregation profiles and orderings of populations based on
aggregation indices. By uniting the mathematical interpretation of the ecological notion of diversity and the etho-
logical notion of typical group size (or crowding, in parasitology), our insight opens a new avenue of both theo-
retical andmethodological research. This is exemplified here using real-life abundance data of avian parasites.
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INTRODUCTION

For a single group of individuals, crowding is
defined by a monotone increasing function of the
number of group members, that is, group abun-
dance. Its value is thought to represent the social
environment of group members and therefore con-
sidered to measure “crowding” from their point of
view. Mean crowding in an assemblage of several
groups is obtained as the arithmetic mean of
crowding values of all individuals. It was first
introduced by Lloyd (1967), who suggested both
group abundance and group abundance minus
one to be the crowding function. Reiczigel et al.
(2005) defined identity, logarithmic, and arbitrary
monotone increasing crowding functions. Jarman

(1974) and Reiczigel et al. (2005, 2008) applied
mean crowding to quantify group size from the
group members’ point of view (as opposed to
mean group size, that is, the arithmetic average of
group abundances, which is interpreted as group
size from the outsiders’ point of view).
Considering a multispecies community, the

“groups” may be defined as the different species.
Mean rarity is commonly applied in such cases to
express the diversity of the community. Patil and
Taillie (1982) introduced a rarity function of a
given species in a community as a monotone
decreasing function R(p), where 0 < p ≤ 1 is the
proportion of individuals of that species. They
defined diversity as the average rarity of species.
This family of diversity indices includes a number
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of measures frequently met in practice, for exam-
ple, species richness, Shannon index, Gini-Simp-
son index, and numerous other ones based on
R�enyi’s concept of generalized entropy (Simpson
1949, R�enyi 1961, Shannon and Weaver 1963, Patil
and Taillie 1982, T�othm�er�esz 1995, Lande 1996).

In this paper, we show that the concepts of
mean crowding and diversity are closely related.
For suitably chosen crowding and rarity func-
tions, mean crowding can be transformed into a
diversity index and vice versa. Exploiting this
equivalence, notions, relationships, and methods
developed in one field can be adapted to the other
one. We first introduce the notion of “effective
number of groups” and some new aggregation
indices that mirror the effective number of species
and evenness. Then, we construct aggregation
profiles and determine aggregation orderings of
populations based on aggregation indices.

As an illustrative example, we analyzed crowd-
ing and diversity measures of five louse species
parasitizing avian hosts (Rook, Corvus frugilegus).
Conspecific parasites inhabiting the same host
individual constitute a self-evident and natural
group. Each bird may host 0–5 different groups
representing 0–5 different parasite species.

In Table 1, we summarize the matching
notions, concepts, and terminologies of crowding
and diversity theory to be used or introduced in
this paper.

METHODS

Background
Consider a set of N disjoint groups of individu-

als. Let Xi denote the number of individuals in
the ith group, i = 1, . . ., N. Let S be a monotone

increasing function defined for positive real
numbers. We call S the crowding function. Mean
crowding (or subjective group size) is

CS ¼
XN
i¼ 1

Xi � SðXiÞ
XÆ

(1)

where XÆ ¼
PN

i¼ 1 Xi (Reiczigel et al. 2005). From
the group members’ point of view, CS is the sim-
ple arithmetic mean of crowding values of the
individuals’ own groups. For example, if S is
identity, N = 3, X1 = 2, X2 = 3, X3 = 1, then
X∙ = 6 and CS = (2 + 2 + 3 + 3 + 3 + 1)/6 = 2.33.
Let pi = Xi/X∙ denote the proportion of individu-
als in the ith group. Then, Xi = X∙ 9 pi and

CS ¼
XN
i¼ 1

pi � SðXÆ � piÞ. (2)

If the groups are considered to be the units of
observation, then CS is the weighted mean of
transformed group sizes with weights equal to
the relative abundances of individuals in the
groups. For the previous example, this yields
CS = 2/6 9 2 + 3/6 9 3 + 1/6 9 1 = 2.33.
When different groups represent different spe-

cies, the diversity index of the community is
commonly measured by the average rarity of
species. Let R be a rarity function. The diversity
index according to R is (Patil and Taillie 1982):

DR ¼
XN
i¼ 1

pi � RðpiÞ. (3)

Equivalence of diversity and crowding
From Eqs. 2, 3, we see that the structures of the

indices of mean crowding and diversity are similar.

Table 1. An overview of parallelism between crowding and diversity concepts, indices, and analysis tools.

Description A biological population subdivided into groups
An ecological community built of populations

representing different species

Origin of concept Ethology, parasitology Ecology
Higher-level unit Population (of similar individuals, e.g., conspecifics) Ecological community (of different species)
Lower-level units Groups (e.g., herds, flocks, bands, packs, shoals,

or colonies)
Populations (representing different species)

Scale function Crowding Rarity
Indices Mean crowding Diversity

Effective number of groups Effective number of species
Aggregation Evenness

Ordering Aggregation Diversity
Diagrams Aggregation profile Diversity profile
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They are related in opposite directions, since the
crowding function S is monotone increasing and
the rarity function R is monotone decreasing.
However, a relevant difference between the charac-
teristics of the two measures is that mean crowd-
ing is density-dependent (it is derived from group
abundances) and diversity is density-independent
(it is calculated from abundance proportions of the
groups). To relate them, we keep the total abun-
dance X∙ fixed. Under this condition, the function

RðpÞ ¼ SðXÆÞ � Sðp� XÆÞ (4)

is a rarity function with R(1) = 0. The corre-
sponding diversity index is

DR ¼ SðXÆÞ � CS. (5)

Conversely, starting from an arbitrary rarity
function R(p), for any given c constant value

SðxÞ ¼ c� Rðx=XÆÞ (6)

is a monotone increasing crowding function,
where 0 < x ≤ X∙. If R(1) = 0, then S(X∙) = c and
Eq. 5 is maintained between the corresponding
diversity and crowding indices.

In summary, when the total abundance is held
fixed, diversity and crowding indices can be
transformed into one another, together with their
rarity and crowding functions. We exploit this
equivalence to introduce new notions and prop-
erties of crowding and diversity.

If the crowding function is the identity function
id(x) = x, then mean crowding Cid ¼PN

i¼ 1 X
2
i =XÆ

equals Lloyd’s (1967) mean demand and linear
crowding of Reiczigel et al. (2005). The rarity
function assigned to id by Eq. 4 is R(p) =
X∙(1 � p), and the diversity index obtained is X∙

times the Gini-Simpson diversity 1�PN
i¼ 1 p

2
i

(Simpson 1949, Lande 1996, Keylock 2005, Jost
2006). Below, we introduce further pairs of
crowding and diversity indices.

Parametric family of crowding and diversity
measures

Let

SqðxÞ ¼
xq�1� 1
q� 1

; if x[0 and q�0;q 6¼ 1;

lnðxÞ; if x[0 and q¼ 1

8<
: (7)

be a family of crowding functions. Here,
limq?1Sq(x) = ln(x); hence, the family is continu-
ous. Mean crowding indices generated by Sq are

Cq ¼
Xq�1

Æ �PN
i¼1 p

q
i � 1

q� 1
; if q 6¼ 1

lnðXÆÞ þ
PN
i¼ 1

pi � lnðpiÞ; if q ¼ 1

8>>><
>>>:

. (8)

The corresponding diversity indices are

Dq ¼
Xq�1

Æ � 1�PN
i¼ 1 p

q
i

q� 1
; if q 6¼ 1

�PN
i¼ 1

pi � lnðpiÞ; if q ¼ 1

8>>><
>>>:

. (9)

Let us observe that Dq can be decomposed into
the product of Xq�1

Æ depending only on the total
abundance and a purely density-independent
factor. The latter is a diversity index related to
R�enyi’s (1961) generalized entropy, studied in
detail by Patil and Taillie (1982).
If q = 2, then the crowding function is

S2(x) = x � 1 and C2 ¼ XÆ �
PN

i¼ 1 p
2
i � 1 is

Lloyd’s (1967) mean crowding. Its diversity coun-
terpart D2 is X∙ times the Gini-Simpson diversity
1�PN

i¼ 1 p
2
i . If q = 1, then the crowding function

is S1(x) = ln(x) and C1 is the logarithmic crowd-
ing (Reiczigel et al. 2005). Its diversity equivalent
D1 is the Shannon diversity index (Shannon and
Weaver 1963). When q = 0, the crowding func-
tion S0(x) = 1 � 1/x is hyperbolic, so we call

C0 ¼ 1� 1
I

(10)

the hyperbolic crowding. Here, I = X∙/N
+ is

mean intensity, where N+ is the number of non-
empty groups. (Empty groups may also be
interpreted in certain cases, such as when
groups of parasites belong to particular host
individuals, and non-infected hosts carry
“empty groups” of parasites.) The correspond-
ing diversity index is

D0 ¼ X�1
Æ � ðNþ � 1Þ. (11)

The density-independent factor of D0 is species
richness minus one, N+ � 1.
Both crowding and diversity indices are dis-

proportionally sensitive to large groups for q > 1
(e.g., Lloyd’s mean crowding and Gini-Simpson
diversity) and to small groups for q < 1 (e.g.,
hyperbolic crowding and species richness). The
reason is that both Cq and Dq derive from the
basic sum

PN
i¼1 p

q
i when q 6¼ 1. It is also stated
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that for q = 1, the effect of groups on Shannon’s
diversity index is proportional to group sizes
(Hill 1973, Patil and Taillie 1982, Keylock 2005,
Jost 2007). We can carry over this property to log-
arithmic crowding.

Effective number of groups
A diversity index D generated by a strictly

monotone decreasing continuous rarity function
R (Eq. 3) is uniquely transformed to an effective
number of species ND by solving (Patil and Tail-
lie 1982)

RðN�1
D Þ ¼ D. (12)

Eq. 12 means that a community with ND equally
common (hence equally rare) species has a diver-
sity index equal to D. The quantity called “effec-
tive number of species” (numbers equivalent,
equivalent number of species, true diversity) was
first introduced by MacArthur (1965) in connec-
tion with Shannon’s diversity index. Hill (1973)
developed a family of “diversity numbers” being
the effective numbers of species derived from
R�enyi’s entropy (1961). Jost (2006, 2007) argued
convincingly for the use of effective number of
species to measure diversity, calling it “true
diversity.”

In a community, the effective number of spe-
cies usually does not exceed the actual number
of species. We formulate the exact rule as an
immediate consequence of Theorem 4.3 in Patil
and Taillie (1982).

Proposition 1.—Suppose R is a strictly mono-
tone decreasing continuous rarity function and
ND is the corresponding effective number of spe-
cies. If the function V(p) = p 9 R(p) is concave on
0 ≤ p ≤ 1, then we have 0 < ND ≤ N+, where N+

is species richness. When V is strictly concave,
then equality holds if and only if the species in
the community are equally common.

Now we adapt the concept of effective number
of species to crowding measures. Let S be a
strictly monotone increasing continuous crowd-
ing function defined for a population partitioned
into N groups. Eq. 4 transforms S into a rarity
function R if the total number of individuals X∙ is
held fixed. We introduce the effective number of
groups NC to be the unique solution of Eq. 12
with diversity D = DR obtained from Eq. 5. By
simple algebra, we reformulate Eq. 12 to get

S
XÆ

NC

� �
¼ CS. (13)

To visualize the effective number of groups,
according to Eq. 13 we can rearrange the total
number of individuals X∙ intoNC equally abundant
groups having the same crowding value CS. A sim-
ilar interpretation was presented for the effective
number of species, that is, true diversity, in Tuo-
misto (2010). The unique solution of Eq. 13 is

NC ¼ N �
�X

S�1ðCÞ . (14)

Here, C = CS is the crowding index related to
S and �X ¼ XÆ=N is mean abundance. We can put
Eq. 14 in a slightly different form

NC ¼ Nþ � I
S�1ðCÞ (15)

where N+ is the number of non-empty groups
and I = X./N

+ is mean intensity.
From Eq. 14, we see that the effective number

of groups NC is proportional to the actual num-
ber of groups N. The second factor is the ratio of
mean abundance �X to mean crowding trans-
formed back to abundance scale

S�1ðCÞ ¼ S�1
PN

i¼ 1 Xi � SðXiÞ
XÆ

 !
. (16)

We name S�1(C) as the rescaled mean crowd-
ing index. It is a Kolmogorov–Nagumo-weighted
quasi-arithmetic mean of group abundances
(Acz�el 1948, R�enyi 1961, Beliakov et al. 2007).
Being an average, it always falls within the small-
est positive and largest group abundance values
recorded.
Proposition 1 can be translated to crowding

measures based on Eq. 4 linking rarity to crowd-
ing functions. Essentially it means that the effec-
tive number of groups will not exceed the actual
number of groups in the population. In the fol-
lowing form of the statement, we apply the nota-
tions used in Eqs. 14, 15.
Proposition 2.—Suppose X∙ > 0 and the func-

tion W(x) = x 9 S(x) is convex for x ≥ 0. Then,
we have 0 < NC ≤ N+ ≤ N and S�1ðCSÞ� I�
�X[ 0. When W is strictly convex, equalities hold
if and only if the groups in the population are
equally sized.
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Aggregation and evenness
It follows from Proposition 1 that under gen-

eral regulatory conditions, the ratio

ER ¼ ND

Nþ (17)

is between 0 and 1 and reaches 1 only in the case
of perfect evenness of species’ proportions. The
ratio ER therefore seems suitable to measure the
evenness component of diversity. Hill (1973) was
the first to measure it in this manner for the fam-
ily of parametric diversity indices coinciding
with the density-independent part of Eq. 9.

In connection with crowding, the concept of
aggregation is preferred instead of evenness
(Lloyd 1967, Bez 2000) and, therefore, we intro-
duce a new aggregation index corresponding to
crowding function S,

AS ¼ N
NC

¼ S�1ðCÞ
�X

. (18)

To separate the aggregating effects of non-
empty groups and their proportion among all
groups, we can decompose the aggregation
index into the product

AS ¼ Nþ

NC
� N
Nþ . (19)

Here, the first factor

Nþ

NC
¼ S�1ðCÞ

I
(20)

is the aggregation index of the same form as
Eq. 18 calculated for the subset of non-empty
groups, and the second factor is the reciprocal of
the proportion of non-empty groups (being equal
to the prevalence of infested hosts in a host-para-
site community).

When the regulatory conditions of Proposi-
tion 2 are fulfilled, AS and its components in
Eq. 19 are greater than or equal to 1 and they
are equal to 1 only if the groups in the popula-
tion have the same size. When the crowding
function is identity id(x) = x, then the corre-
sponding aggregation index is the ratio of
Lloyd’s mean demand (Lloyd 1967) or linear
crowding presented in Reiczigel et al. (2005) to
mean abundance �X

Aid ¼
1
N

PN
i¼ 1 X

2
i

�X2
. (21)

We note that the linear aggregation index Aid

is a special case of Bez’s aggregation index (Bez
2000). We mention also that Lloyd’s patchiness
index (Lloyd 1967)

PLloyd ¼ C2
�X

¼
1
N

PN
i¼ 1 Xi � ðXi � 1Þ

�X2
(22)

is not an aggregation index of the form of Eq. 18.
Bez (2000) compared Lloyd’s patchiness index
with several aggregation indices including Aid.
The aggregation indices matching the family

of crowding functions Sq in Eq. 7 are

Aq ¼

1
N

XN

i¼1
Xq

i

�Xq

0
B@

1
CA

1
q�1

; if q�0; q 6¼ 1

exp

1
N

XN

i¼1
Xi� lnðXiÞ

�X

0
B@

1
CA

�X
; if q¼ 1

8>>>>>>>>>>><
>>>>>>>>>>>:

.

(23)

They are density-independent (i.e., depend only
on relative abundances) and increase strictly
monotone with increasing scale parameter q.
When q = 0, the aggregation index is the recipro-
cal of the prevalence of non-empty groups. For
q < 1, the index Aq emphasizes the aggregation
among small groups. The sensitivity of the loga-
rithmic aggregation index A1 is proportional to
group abundances (here q = 1). When q > 1, the
index is sensitive to large, dominant groups. If q
becomes large, Aq approaches the ratio of the size
of the largest group max Xi to mean abundance �X.
An aggregation profile of a population can be

drawn by plotting the natural logarithms of the
aggregation indices Aq against the scale parameter
q. Aggregation ordering of a family of popula-
tions (such as those forming an ecological com-
munity) is also possible by comparing their
aggregation profiles. The ideas of aggregation
profiles and aggregation ordering originate from
diversity profiles and diversity ordering described
in Patil and Taillie (1982). T�othm�er�esz (1995) com-
pared different graphical methods to visualize
diversity profiles and ordering.

Statistical inference
Our results and formulas described above per-

tain to assemblages partitioned into a known
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number of groups, with fully recorded within-
group abundances of individuals. If the target
assemblage has a large number of individuals
classified in groups, then a random sample
is usually drawn to estimate crowding, group
size, or diversity characteristics. However, the
structure of the groups in the assemblage
and the sampling design may affect statistical
inference.

Suppose first that each group in the popula-
tion contains limited number of individuals. Par-
asites (representing individuals) harbored by
hosts (representing groups) is an example of
such a population. To estimate crowding mea-
sures of the whole population, we take a random
sample of size N of the groups. If the number of
groups in the population is too small, then
groups are selected with replacement to ensure
independence. Data of all individuals belonging
to the sampled groups are recorded. Let the
abundances of individuals in the ith group in the
sample be Xi, i = 1, . . ., N. In what follows,
we demonstrate that all the crowding and
group size measures considered in the previous
sections can be consistently estimated from this
sample.

Proposition 3.—Let S be a crowding function.
Suppose the population averages EX1 and
EX1S(X1) are finite and EX1 > 0. Then, the
sample estimate (Eq. 1) of the crowding index is
consistent, that is, tends to the crowding index of
the whole population

EX1S X1ð Þ
EX1

(24)

with probability 1 as the sample size N tends to
infinity.

This statement follows from the strong law of
large numbers (Etemadi 1981, Gut 2013). The
population-level crowding index (Eq. 24) was
introduced by Reiczigel et al. (2005). Percentile
and bias-corrected and accelerated (BCa)
bootstrap confidence intervals (CI) for Eq. 24
can be calculated by resampling (Efron and
Tibshirani 1993, Davison and Hinkley 1997,
Reiczigel et al. 2005).

Population-level aggregation indices can also
be approximated with sample estimates.

Proposition 4.—Suppose S is a strictly mono-
tone continuous crowding function, EX1 and

EX1S(X1) are finite, and EX1 > 0. Then, the
aggregation index (Eq. 18) estimated from the
sample is consistent, that is, tends to the popula-
tion-level aggregation index

S�1 EX1S X1ð Þ
EX1

� �
EX1

(25)

with probability 1 as the sample size N tends to
infinity.
This assertion is also concluded from the

strong law of large numbers. Percentile and BCa
bootstrap CIs for Eq. 25 can be calculated by
resampling (Efron and Tibshirani 1993, Davison
and Hinkley 1997).
Consequently, if the moments EXq

1 are positive
and finite for all q > 0, then sample estimates of
the density-independent parametric aggregation
indices (Eq. 23) and their aggregation profiles
are consistent.
If the total number of groups in the entire pop-

ulation is G, then the population-level effective
number of groups is

G� EX1

S�1 EX1S X1ð Þ
EX1

� � . (26)

If G is known or its consistent estimate is avail-
able, then the effective number of groups is con-
sistently estimated by the ratio of the (estimate
of) total number of groups G to the sample
aggregation index (Eq. 18).
If the individuals belonging to groups are clas-

sified into a limited number of non-overlapping
sets (let us call them species), then diversities of
species of the whole assemblage can also be esti-
mated. First, a random sample of groups of size
N taken with replacement is needed. In the next
step, random subsamples of individuals of each
group in the sample are drawn independently of
each other. Abundance proportions of species of
the whole assemblage are estimated based on
the obtained subsamples. Finally, diversities of
the pooled assemblage are calculated from the
proportions of abundances as, for example, in
Tuomisto (2010).
Consider a species of the assemblage. Suppose

that the abundance of the selected species in the
ith sampled group has binomial distribution
with size Xi and probability parameter pi. Let the
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mean of probabilities of the selected species in all
non-empty groups of the assemblage be p, that
is, E(p1|X1 > 0) = p. We describe two sampling
designs that enable consistent estimates of p and
the diversities of the pooled assemblage.

Proposition 5.—Suppose that only non-empty
groups are taken in the random sample. Assume
that subsamples of individuals of size n are
drawn independently with replacement from
each sampled group. Let Ui be the sub-
sample abundance of the selected species in
group i. Then, the average species proportionPN

i¼ 1 Ui=ðn�NÞ tends to p with probability 1,
when N tends to infinity.

The second sampling design requires that each
individual in group i is included in the ith sub-
sample independently of the other individuals
with a certain probability of qi. (Therefore, the
sizes of the subsamples vary by chance.) Let the
assemblage average of the sampling probability
Eq1 = q > 0. We mention the important special
case q = 1 when all individuals in the groups are
included in the subsamples. See the illustrative
analysis of groups of avian lice in the Example
section.

Proposition 6.—Assume the proportion of non-
empty groups P(X1 > 0) is positive, and sam-
pling probability qi is independent of group size
Xi and species probability pi. Let Zi be the total
abundance and Ui be the abundance of the
selected species in the subsample drawn from
group i. Then, the average species proportionPN

i¼ 1 Ui=
PN

i¼ 1 Zi tends to E(p1 9 X1)/E(X1) with
probability 1, when N tends to infinity. If addi-
tionally Xi is uncorrelated with pi for non-empty
groups, then the limit equals p.

The proofs of Propositions 5 and 6 are placed
in the Proofs section. We mention that the esti-
mates of species proportions based on the sam-
pling design applied in Proposition 6 lead to
consistent estimates of gamma diversities (see,
e.g., Tuomisto 2010) of the pooled assemblage.
When group size Xi and species probability pi
are not correlated in non-empty groups, then the
species proportions obtained with the sampling
method used in Proposition 5 can also be applied
to consistently estimate gamma diversities of the
pooled assemblage.

We emphasize that within-group species pro-
portions tend to correlate strongly with group
size making comparisons of diversities across

groups challenging. This positive association
may emerge due to two different causalities.
First, we can interpret each group as a random
subsample taken from the total flora or fauna.
From a purely mathematical point of view, we
expect rare species often being absent from
smaller groups. The larger the groups are, the
more likely they will involve rare species, too.
Propositions 5 and 6 control the effects of this
mechanism. Second, biogeographical processes
(MacArthur and Wilson 1967) may be responsi-
ble for a positive correlation between group
size Xi and species probability pi. Say, the
sequential colonization of newly emerged habi-
tat patches by different species likely also
results in such relationships. Thus, newly born
individuals of a host population or new islands
emerging in an archipelago are sequentially tar-
geted by new colonizers representing different
species.
When the number of groups partitioning the

assemblage is limited, we can also choose another
data collecting strategy of taking a random sam-
ple from the pooled (virtually ungrouped) set of
individuals. All available data, including group
membership, have to be recorded for all individu-
als sampled. This method is usually selected
when groups contain a great number of individu-
als, for example, when groups represent species
in a community. Another example is the collec-
tion of non-overlapping habitat areas, where each
area (playing the role of a group) harbors a lot of
individuals. In some applications, however, it is
possible that the pooled set contains only moder-
ate number of individuals. In this case, the ran-
dom sample has to be drawn with replacement.
Relative abundances of the groups are consis-
tently estimated from samples taken from the
pooled assemblage. Estimates of the diversity
indices (Eq. 3), the effective numbers of species
obtained by solving Eq. 12, the density-indepen-
dent parametric aggregation indices (Eq. 23), and
their aggregation profiles are also consistent.
Methods for bias reduction and bootstrap CI esti-
mates together with illustrative simulated and
real-world examples are described in Appendix E
of Chao et al. (2015), Chao and Jost (2015) for
parametric measures estimated from this type of
samples.
We mention that it is not possible to estimate

density-dependent crowding measures properly,
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based merely on the sample drawn from the
pooled set of individuals. If an additional esti-
mate of the total abundance X of individuals is
available (Seber 1982, Baillargeon and Rivest
2007), then mean crowding C with crowding
function S can be estimated by Eq. 2. Further-
more, the effective number of groups

GC ¼ X
S�1ðCÞ (27)

is obtained by modifying Eq. 14. If the number
of groups G of the whole assemblage is also
known or estimated, for example, by rarefaction
(Colwell et al. 2012), then the aggregation index
derived from Eq. 27 is

AS ¼ G
GC

¼ G� S�1ðCÞ
X

. (28)

EXAMPLE

To illustrate the notions and methods intro-
duced above, here we present a detail of a statis-
tical analysis of data describing lice parasitizing
avian (Rook, Corvus frugilegus) hosts. These data
were formerly reported by R�ozsa et al. (1996).
The sample consists of 1973 individuals repre-
senting five species of parasitic lice hosted by 37
bird individuals. General descriptive statistics
are listed in Table 2.

Three dominant and two rare species comprise
the sample. Both prevalence (the proportion of
infested hosts within the sample) and mean
intensity (the mean number of parasites har-
bored by infested hosts) are high in the dominant
species. Standard deviation (SD) of intensity is
greater than mean intensity both within each
dominant species and in the pooled louse

community, indicating that the abundance distri-
butions are aggregated. We note that both
Lloyd’s mean crowding and linear crowding are
functions of mean and SD of intensity (Lloyd
1967, Reiczigel et al. 2005).
Crowding indices are summarized in Tables 3,

4. Lloyd’s and linear crowding indices emphasize
louse intensities of highly infected hosts. Their
abundance-rescaled versions (Eq. 16) coincide
with the linear crowding index. Logarithmic
crowding expresses multiplicative crowding
effects. It means that a small change (D) in its
value corresponds to approximately 100 9 D
percent change in its rescaled equivalent. For
instance, the difference between mean logarith-
mic crowding indices of Menacanthus gonophaeus
and Myrsidea isostoma is D = 0.15, producing
approximately 15% greater rescaled logarithmic
crowding for Me. gonophaeus. (The exact differ-
ence is 100 9 (exp(0.15) � 1) = 16.2%.) In loga-
rithmic crowding, each host is weighted
proportionally to its louse abundance. Therefore,
the large difference observed between rescaled
mean linear and logarithmic crowding of
My. isostoma corresponds to the existence of a
great proportion of highly infected hosts. In
Brueelia tasniamae, the difference between
rescaled mean linear and logarithmic crowding
is moderate indicating a smaller proportion of
heavily infected hosts. This pattern can also be
seen in the aggregation plot (Fig. 1) where the
log-scaled aggregation profiles of My. isostoma
and B. tasniamae intersect.
Hyperbolic crowding indices depend only on

mean intensity (Eq. 10). Rescaled hyperbolic
mean crowding coincides with mean intensity.
The comparison of rescaled linear and logarith-
mic crowding with mean intensity may reveal

Table 2. General descriptive statistics of louse species harbored by avian hosts.

Species Total abundance No. infected hosts Prevalence (%)

Intensity

Mean SD

Brueelia tasniamae 787 18 48.7 43.7 54.9
Myrsidea isostoma 572 26 70.3 22.0 38.8
Menacanthus gonophaeus 559 24 64.9 23.3 38.5
Philopterus atratus 38 9 24.3 4.2 4.1
Colpocephalum fregili 17 3 8.1 5.7 3.5
All together 1973 34 91.9 58.0 96.7

Notes: Total abundance is the number of parasite individuals, prevalence is the proportion of infested hosts within the sam-
ple, and intensity is the number of parasites harbored by an infested host. SD, standard deviation.
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aggregation among highly infected and moder-
ately infected hosts. The differences are of the
same magnitude as intensity for the three domi-
nant species, indicating heterogeneity of infec-
tion, that is, the existence of considerable
proportions of highly, moderately, and lowly
infected hosts. Contrarily, in case of the two rare
species the differences are negligible (Table 4)
due to their generally low levels of infection.

We calculated BCa 95% bootstrap CIs for the
estimated quantities in Tables 3, 4.

Parametric aggregation indices estimated
from relative abundances are shown in Table 5.
When all species are pooled together, the linear
aggregation (q = 2) is 4.0. It is the ratio of mean
crowding to mean abundance. It expresses
aggregation of parasites on the heavily infected
hosts. The interpretation of this aggregation
level is simple; “typical” lice live in birds four
times more parasitized than “typical” birds. The
logarithmic aggregation (q = 1), that is, the ratio
of rescaled mean logarithmic crowding to mean
abundance, is 2.6. It represents the aggregation
of lice occurring on moderately parasitized
birds. Hyperbolic aggregation (q = 0) is the

reciprocal of prevalence; its estimated value is
1.1. It reflects only the presence or absence of lice
in hosts; it is not influenced by the actual louse
abundance values.
In this particular example, the percentile and

BCa bootstrap CIs are too wide and, therefore,
only the approximate magnitudes of crowding
and aggregation measures are estimated safely.
We would need a larger collection of abundance
records to prove statistically that the differences
detected in the sample also characterize the popu-
lations. In this illustrative analysis, we emphasize
the importance of reporting CIs as a measure of
precision of the obtained results. Moreover, CIs
can serve as guides in planning appropriate sam-
ple sizes of future collections of data.
The profiles of parametric aggregation indices

of the five louse species and the pooled commu-
nity of lice are shown in Fig. 1. Right parts of the
curves reflect parasite aggregation on the most
infected hosts. The levels of aggregation appear
to be similar in case of the three dominant spe-
cies. The two rare species seem to be much more
aggregated, mainly because their aggregation
indices are inversely proportional to the low

Table 3. Parametric crowding indices.

Species

Lloyd Linear Logarithmic Hyperbolic

Index 95% BCa CI Index 95% BCa CI Index 95% BCa CI Index 95% BCa CI

Brueelia tasniamae 107.9 79.5, 127.6 108.9 80.5, 128.6 4.49 4.01, 4.75 0.977 0.956, 0.986
Myrsidea isostoma 86.9 24.8, 164.3 87.9 25.8, 165.3 3.89 3.00, 4.83 0.955 0.921, 0.980
Menacanthus gonophaeus 83.4 43.2, 123.0 84.4 44.2, 124.0 4.04 3.28, 4.58 0.957 0.917, 0.978
Philopterus atratus 6.7 2.1, 9.9 7.7 3.1, 10.9 1.81 0.98, 2.30 0.763 0.529, 0.872
Colpocephalum fregili 6.1 1.0, 8.0 7.1 2.0, 9.0 1.88 0.69, 2.20 0.824 0.500, 0.889
All together 213.5 117.9, 350.6 214.5 118.9, 351.6 4.95 4.35, 5.55 0.983 0.970, 0.990

Note: BCa, bias-corrected and accelerated; CI, confidence interval.

Table 4. Rescaled parametric crowding indices.

Species

Lloyd Linear Logarithmic Hyperbolic

Index 95% BCa CI Index 95% BCa CI Index 95% BCa CI Index 95% BCa CI

Brueelia tasniamae 108.9 80.5, 128.6 108.9 80.5, 128.6 89.1 55.0, 115.7 43.7 22.5, 73.3
Myrsidea isostoma 87.9 25.8, 165.3 87.9 25.8, 165.3 48.8 20.1, 125.6 22.0 12.8, 50.6
Menacanthus gonophaeus 84.4 44.2, 124.0 84.4 44.2, 124.0 56.6 26.8, 98.4 23.3 12.1, 44.9
Philopterus atratus 7.7 3.1, 10.9 7.7 3.1, 10.9 6.1 2.7, 9.9 4.2 2.1, 7.8
Colpocephalum fregili 7.1 2.0, 9.0 7.1 2.0, 9.0 6.5 2.0, 9.0 5.7 2.0, 9.0
All together 214.5 118.9, 351.6 214.5 118.9, 351.6 141.0 77.8, 260.3 58.0 34.1, 104.0

Note: BCa, bias-corrected and accelerated; CI, confidence interval.
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prevalence of infested birds; see Eqs. 19, 20.
However, sample size is too small to draw reli-
able statistical conclusion for these species.
Finally, true diversities of the pooled commu-

nity of louse species are summarized in Table 6.
The Shannon and Simpson true diversities
clearly identify the three dominant species. Per-
centile and BCa 95% bootstrap CIs are quite nar-
row and accurate.
The R code and data used for the statistical

analyses outlined in this section are given in the
supporting information (Data S1).

SIMULATION

To provide an adequate control of the accuracy
of the statistical estimates, we simulated data of
groups of individuals that contain various spe-
cies. Group abundances were generated from the
equal mixture of two negative binomial distribu-
tions having mean value and shape parameters

Fig. 1. Profiles of parametric aggregation indices.

Table 5. Parametric aggregation indices.

Species Exponent
Aggregation

index
Percentile

CI BCa CI

Brueelia
tasniamae

0 2.1 1.5, 3.1 1.5, 3.1
1 4.2 2.8, 6.9 2.8, 6.8
2 5.1 3.2, 9.7 3.1, 9.2

Myrsidea
isostoma

0 1.4 1.2, 1.9 1.2, 1.9
1 3.2 1.8, 4.6 2.1, 5.7
2 5.7 2.3, 8.4 2.9, 12.5

Menacanthus
gonophaeus

0 1.5 1.3, 2.1 1.3, 2.1
1 3.74 2.5, 5.3 2.7, 5.9
2 5.6 3.5, 8.9 3.7, 10.0

Philopterus
atratus

0 4.1 2.6, 9.3 2.6, 9.3
1 6.0 3.5, 12.0 3.6, 12.7
2 7.5 4.2, 15.2 4.4, 16.3

Colpocephalum
fregili

0 12.3 5.3, 37.0 5.3, 37.0
1 14.2 6.3, 37.0 5.2, 37.0
2 15.5 1.0, 37.0 1.0, 37.0

All species
together

0 1.1 1.0, 1.2 1.0, 1.3
1 2.6 1.9, 3.5 2.1, 3.9
2 4.0 2.5, 5.9 2.9, 6.9

Note: BCa, bias-corrected and accelerated; CI, confidence
interval.
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200 and 10 and 1000 and 0.5, respectively. Zeroes
and the highest 1% of the values of the distribu-
tions were excluded. The resulting mixture is
heterogeneous and aggregated, with expected
mean 572.01, SD 926.53, coefficient of variation
(CV) 1.62, and linear aggregation 3.62 (estimated
by Eq. 21), producing a wide range of group
sizes.

We estimated crowding and aggregation mea-
sures (Eqs. 8, 16, 23) together with percentages
of bias and standard error (SE; related to assem-
blage-level means) for exponents q = 0, 1, 2.
Propositions 3 and 4 demonstrate that the esti-
mates are consistent. Sample sizes of group
abundances were set to 50, 100, 300, 500, and
1000. We obtained the estimates from 105 simu-
lated replicates of group abundance samples for
each sample size. Assemblage-level crowding
and aggregation measures were calculated from
107 simulated group abundances. They were

used to assess bias of the estimates. The results
are summarized in Table 7.
The estimates were nearly unbiased for q = 0

and had a moderate negative bias for q = 1, 2.
For crowding indices, this was proven mathe-
matically in Reiczigel et al. (2005). When the
sample sizes were at least 100, bias was < 2.5%
and SE was 10–21% of the assemblage mean
for q = 1, 2. When the sample sizes were 300,
bias was < 0.75% and SE was 5–12% of the
assemblage mean for q = 1, 2. Reiczigel et al.
(2005) obtained roughly the same level of
accuracy for empirical distributions of avian
ectoparasites.
Within-group theoretical species proportions

were derived from the lognormal (Magurran 2004)
and geometric series (Tokeshi 1990) distribution
models. To account for between-group heterogene-
ity, the actual within-group species proportions
were generated (independently of the abundance
of the group) from a Dirichlet distribution
(McCarthy 2007) with parameter vector propor-
tional to the theoretical species proportions. The
Dirichlet model ensures that the expected (assem-
blage mean) within-group species proportions
coincide with the predefined theoretical species
proportions. Within-group species abundances
were simulated from the multinomial distribution
with size being the abundance of the group and
probabilities equal to the actual within-group spe-
cies proportions.

Table 6. True diversities of the pooled community of
louse species.

Name Exponent
True

diversity
Percentile

CI BCa CI

Species richness 0 5.0 4.0, 5.0 4.0, 5.0
Shannon 1 3.3 2.9, 3.6 3.1, 3.7
Simpson 2 3.1 2.5, 3.3 2.7, 3.4

Note: BCa, bias-corrected and accelerated; CI, confidence
interval.

Table 7. Mean, bias, and standard error (SE) of estimates of parametric crowding and aggregation measures.

Exponent No. groups

Crowding index Rescaled crowding index Aggregation index

Estimate Bias (%) SE (%) Estimate Bias (%) SE (%) Estimate Bias (%) SE (%)

0 50 0.998 �0.01 0.04 569.990 0.00 22.94 1.000 0.00 0.00
100 0.998 �0.01 0.03 570.985 0.00 16.17 1.000 0.00 0.00
300 0.998 0.00 0.02 572.316 0.00 9.35 1.000 0.00 0.00
500 0.998 0.00 0.01 572.031 0.00 7.14 1.000 0.00 0.00
1000 0.998 0.00 0.01 572.227 0.00 5.13 1.000 0.00 0.00

1 50 7.062 �0.97 4.33 1221.220 �2.31 28.79 2.119 �3.02 12.34
100 7.098 �0.47 3.02 1236.699 �1.07 20.68 2.154 �1.42 8.82
300 7.121 �0.14 1.69 1246.911 �0.26 11.94 2.175 �0.47 4.98
500 7.125 �0.09 1.30 1247.689 �0.19 9.19 2.179 �0.29 3.84
1000 7.128 �0.04 0.92 1249.406 �0.06 6.55 2.182 �0.14 2.71

2 50 1958.405 �5.47 27.81 1959.405 �5.47 27.80 3.431 �5.32 18.63
100 2020.101 �2.49 20.13 2021.101 �2.49 20.12 3.539 �2.33 13.33
300 2056.569 �0.73 11.49 2057.569 �0.73 11.49 3.597 �0.74 7.55
500 2061.855 �0.48 8.88 2062.855 �0.48 8.87 3.607 �0.46 5.80
1000 2067.684 �0.20 6.27 2068.684 �0.20 6.27 3.616 �0.22 4.10
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The number of species was set to 200 in the
simulated assemblage. In the lognormal model,
the kth theoretical species proportion pk was set c
times the k/201-quantile of the lognormal distri-
bution with location parameter 0 and scale
parameter 1.2. In the geometric series model,
pk = c 9 0.03 9 0.97k�1, k = 1, 2,. . ., 200. In each
version, c is a normalizing constant to ensure that
the sums of the theoretical species proportions
equal 1. The CV of both models was 1.43, so their
dominant species proportions were equally
heterogeneous. For moderately frequent and rare
species, the lognormal model is more diverse
and even than the geometric series model; their
Shannon diversities are 106.74 and 87.82, respec-
tively. The CV of the actual within-group species
proportions generated from the Dirichlet distri-
bution was 1.79; it is 25% greater than the CV of
the theoretical species proportions.

We estimated assemblage-level gamma diver-
sities together with their percentage bias and SE
for exponents q = 0, 1, 2. In a single simulation
cycle, the number of groups was set to 20, 50,
and 100. The sizes of within-group samples of
individuals taken with replacement were 20, 50,
100, and 200. The estimates were obtained from
105 replicates for each combination of selected
group numbers and within-group sample sizes.
Exact assemblage-level gamma diversities were
calculated from the theoretical species propor-
tion models. They were used to assess bias of the
estimates. (We note that according to Proposition
5, the estimates are consistent.) The results are
summarized in Table 8.

The simulation demonstrated the existence of
considerable negative bias exceeding in most
cases the magnitude of SE.

For q = 0, the theoretical species richness of
200 was estimated. For small and moderate sam-
ple sizes, the observed bias was much larger than
the SE. In the assemblage with lognormal species
distribution, at least 2000 individuals had to be
sampled (100 groups, 20 individuals per group)
to achieve < 10% bias. (The corresponding SE
was 2%.) The assemblage generated from the
geometric series model had much more uneven
species distribution. Here, 10,000 individuals
were needed (100 groups, 100 individuals per
group) to produce 10.7% bias and 1.8% SE.

For q = 1, the assemblage-level Shannon diversi-
ties were estimated. Their values in the lognormal

and geometric series models were 106.74 and
87.82, respectively. The observed bias and SE were
generally smaller than those recorded for species
richness. The accuracies of the diversity estimates
of the two species distribution models were simi-
lar. In the logarithmic model with 100 groups sam-
pled and 20 individuals drawn within each group,
the recorded bias and SE were �5.6% and 2.9%,
respectively. In the geometric series model with
the same sampling design, the bias was �6.4%
and the SE was 2.3%.
For q = 2, the assemblage-level Simpson diver-

sities of the lognormal and geometric series mod-
els were 65.61 and 65.37, respectively. They are
almost equal, because the CVs of the two species
proportion models were the same (up to round-
ing error). The observed bias was somewhat
smaller and the SE was slightly larger than that
for Shannon’s diversity. The accuracies of the
diversity estimates of the two species distribu-
tion models were similar. In the logarithmic
model, the bias was slightly smaller and the SE
larger than that in the geometric model. In the
logarithmic model, if 100 groups were drawn
and 20 individuals were sampled within each
group, then the bias was �3.1% and the SE was
4.8%. In the geometric series model with the
same sampling design, the bias was �4.6% and
the SE was 2.9%.
We also carried out a modified simulation in a

way that within each group each individual was
randomized, independently of each other and
the actual group size, to be included in the sam-
ple with a probability of 0.1. Proposition 6
ensures consistency of the estimates of assem-
blage-level gamma diversities obtained from this
sampling design. In the logarithmic model with
50 groups, for q = 0 the bias and SE of the esti-
mated gamma diversity were �9.1% and 2.6%,
respectively. For q = 1, the bias and SE were
�7.1% and 2.9%, and for q = 2, they were �4.5%
and 4.9%, respectively. In the geometric series
model with 50 groups, for q = 0 the bias and SE
of the estimated gamma diversity were �25.3%
and 3.3%, respectively. For q = 1, the bias and SE
were �6.5% and 2.5%, and for q = 2, they were
�4.7% and 3.1%, respectively.
When group abundances and the number

of species in the assemblage are small, it is con-
venient to draw all individuals (without replace-
ment) of the sampled groups to estimate
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assemblage-level gamma diversities (see the
Example section for illustration). It follows from
Proposition 6 that these estimates are consistent.
We investigated the accuracy of the estimates by
simulation.

For group abundances, we selected a negative
binomial distribution with mean value 60 and
shape parameter 0.15, truncated to have only
positive values. This is an aggregated distribu-
tion typical for abundances of avian ectopara-
sites, with expected mean 101.17, SD 190.80, CV
1.89, and linear aggregation index 4.56.

The number of species was set to 20 in the simu-
lated assemblage. We applied lognormal and geo-
metric series models to define theoretical species
proportions. In the lognormal model, the kth theo-
retical species proportion pk was obtained from
the k/21-quantiles of the lognormal distribution
with location parameter 0 and scale parameter
1.6. In the geometric series model, pk was propor-
tional to 0.264 9 0.736k�1, k = 1, 2,. . ., 20. The CV
of both models was 1.43, assuring equal hetero-
geneity of the dominant species proportions. The
actual species proportions and abundances were

Table 8. Mean, bias, and standard error (SE) of estimates of parametric diversities.

Exponent
No.

groups
Within-group
sample size

Diversities of the lognormal model Diversities of the geometric series model

Estimate Bias (%) SE (%) Estimate Bias (%) SE (%)

0 20 20 118.63 �40.69 2.88 96.09 �51.96 2.26
50 153.42 �23.29 3.13 120.54 �39.73 2.35
100 171.37 �14.32 3.05 135.76 �32.12 2.40
200 182.07 �8.97 2.81 147.66 �26.17 2.40

50 20 159.04 �20.48 2.59 124.94 �37.53 2.28
50 182.36 �8.82 2.15 148.00 �26.00 2.18
100 191.46 �4.27 1.68 161.99 �19.00 2.10
200 195.71 �2.14 1.26 172.03 �13.98 1.97

100 20 180.57 �9.72 1.97 145.69 �27.15 2.17
50 193.74 �3.13 1.29 166.90 �16.55 1.96
100 197.60 �1.20 0.84 178.65 �10.67 1.77
200 199.06 �0.47 0.53 186.42 �6.79 1.54

1 20 20 79.53 �25.49 4.92 68.32 �22.21 4.15
50 90.98 �14.76 4.75 75.82 �13.66 3.69
100 95.60 �10.44 4.59 78.79 �10.28 3.44
200 97.95 �8.23 4.59 80.41 �8.44 3.27

50 20 94.39 �11.57 3.83 78.10 �11.07 3.07
50 100.34 �6.00 3.26 82.00 �6.63 2.45
100 102.45 �4.03 3.01 83.49 �4.93 2.19
200 103.52 �3.02 2.86 84.28 �4.04 2.03

100 20 100.74 �5.63 2.86 82.22 �6.38 2.33
50 103.97 �2.60 2.37 84.59 �3.69 1.80
100 105.00 �1.63 2.15 85.37 �2.79 1.60
200 105.54 �1.13 2.01 85.82 �2.28 1.45

2 20 20 54.84 �16.42 8.36 53.69 �17.87 5.67
50 59.30 �9.63 7.50 58.15 �11.04 5.18
100 61.01 �7.02 6.99 59.82 �8.49 4.94
200 61.84 �5.76 6.83 60.68 �7.18 4.73

50 20 61.15 �6.80 6.37 60.03 �8.18 3.97
50 63.28 �3.55 5.24 62.09 �5.01 3.25
100 64.01 �2.45 4.67 62.85 �3.86 2.93
200 64.42 �1.81 4.32 63.23 �3.27 2.77

100 20 63.58 �3.10 4.78 62.39 �4.55 2.92
50 64.72 �1.36 3.80 63.59 �2.73 2.32
100 65.10 �0.78 3.39 63.93 �2.20 2.09
200 65.30 �0.48 3.12 64.14 �1.88 1.93

Note: Within-group individuals were sampled with replacement.
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generated from the Dirichlet and multinomial
distribution the same way as in the previous
simulation designs. The CV of the actual within-
group species proportions was 1.79; it is 25%
greater than the CV of the theoretical species pro-
portions.

Assemblage-level gamma diversities together
with their bias and SE were estimated for expo-
nents q = 0, 1, 2. In each simulation cycle, the
number of groups generated was set to 20, 50,
and 100. The estimates were obtained from 105

replicates. Exact assemblage-level gamma diver-
sities were calculated from the theoretical species
proportion models. They were used to assess
bias of the estimates. The results are summarized
in Table 9.

The simulation demonstrated the existence of
small-to-moderate negative bias and SE that
rapidly attenuated when the number of sampled
groups increased.

For q = 0, the theoretical species richness of 20
was estimated. In the logarithmic model for 20
sampled groups, the resulting bias and SE were
�6.5% and 4.9%, respectively. In the geometric
series model, drawing 20 groups yielded �16.8%
bias and 6.8% SE. In both models with 50 or
more sampled groups, the magnitude of bias and
SE was less than 6.8% and 4.9%, respectively. For
q = 1, the assemblage-level Shannon diversities
were estimated. In both models with 50 or more
sampled groups, the magnitude of observed bias
and SE was < 4.0% and 6.8%, respectively. For
q = 2, the Simpson diversities were estimated. In
both models with 50 or more sampled groups,
the magnitude of observed bias and SE was
< 2.4% and 9.9%, respectively.

The R code to generate the simulated data
used in this section is given in the supporting
information (Data S2).

DISCUSSION

In ecology, crowding expresses the magnitude
of coexisting individuals in a close neighborhood
(individuals belonging to a particular group or
inhabiting a habitat patch) of each individual in
a population. Diversity is associated with the
number of species and their degree of evenness
in a community. Although their underlying eco-
logical concepts and application purposes seem
markedly different, mean crowding and diver-
sity measures are surprisingly similar in mathe-
matical structure. Both summarize heterogeneity
of hierarchical communities of groups of individ-
uals. They are weighted arithmetic averages of
generally nonlinear functions of group sizes
named crowding function and rarity function. In
this paper, we constructed transforming equa-
tions between the two families of these measures.
The obtained equivalence allowed us to intro-
duce several notions into one field that had been
developed historically in the other one.
Crowding functions are usually density-

dependent functions of group abundance, total
biomass, plant coverage, lifespan, etc. (For the
sake of simplicity, we mentioned only abundance
throughout the present text.) Rarity functions
chosen in diversity index definitions depend on
relative abundance, proportion of biomass, etc.,
so they are density-independent in general.
However, the transformation equations (Eqs. 4,
6) can be applied to density-independent

Table 9. Mean, bias, and standard error (SE) of estimates of parametric diversities.

Exponent No. groups

Diversities of the lognormal model Diversities of the geometric series model

Estimate Bias (%) SE (%) Estimate Bias (%) SE (%)

0 20 18.70 �6.48 4.85 16.64 �16.80 6.76
50 19.74 �1.30 2.38 18.64 �6.79 4.92
100 19.97 �0.15 0.85 19.56 �2.21 3.05

1 20 8.95 �8.10 9.43 8.07 �7.98 8.56
50 9.35 �3.96 6.79 8.42 �3.93 6.15
100 9.54 �2.05 5.14 8.57 �2.28 4.61

2 20 6.30 �4.20 13.77 6.19 �5.45 11.21
50 6.45 �1.94 9.85 6.39 �2.36 7.91
100 6.52 �0.81 7.36 6.46 �1.37 5.81

Note: All within-group individuals were drawn in the samples.
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crowding functions or density-dependent rarity
functions as well. Furthermore, the relationships
(Eqs. 4, 6) can be interpreted either to be density-
independent under the condition of fixed total
abundance or unconditionally, depending also
on the varying total abundance.

Mean crowding measures of a population (that
is subdivided into groups of individuals) are
affected by the crowding function. Its selection is
determined by the underlying biological model.
The simplest and most frequently applied ver-
sion is the original abundance scale yielding
linear mean crowding, or abundance minus one
to produce Lloyd’s mean crowding. These scales,
however, overweight dominant groups of the
population. When the crowding function is loga-
rithmic, each group is weighted proportionally
to its abundance in mean crowding. Logarithmic
scale seems suitable when there are large differ-
ences between group abundances, such as in case
of microbial pathogens inhabiting host individu-
als as habitat patches. Log transformation con-
tracts group abundances of different magnitudes
to enable comparisons. Furthermore, logarithmic
scale is applicable when the crowding model is
multiplicative, that is, when the degree of crowd-
ing effect is properly expressed in percentages.
These crowding functions are special cases of a
family of power expressions (Eq. 7) originating
from diversity index theory (Hill 1973, Patil and
Taillie 1982).

We note that there are important alternative
models beyond family (Eq. 7). For instance, an
exponentially increasing crowding function
describes well such grouped populations where
each new individual entering a group strength-
ens within-group competition substantially.

A substantive drawback of using different
crowding functions is that mean crowding or
group size measures obtained in this way are on
different scales and therefore cannot be simply
compared. Abundance-rescaled crowding indices
(Eq. 16), however, have the same scale. They
are comparable even when the crowding func-
tions differ. The general aggregation index
(Eq. 18) defined as the ratio of rescaled crowd-
ing index to mean abundance is also compara-
ble between different crowding scales. This
provides justification for the use of aggregation
profiles and ordering.

Crowding measures are usually applied to
populations containing a great number of dis-
joint groups each of them consisting of a limited
number of individuals. Contrarily, diversity
indices are generally designed for communities
with bounded number of species that may con-
tain very large numbers of individuals. These
minor structural differences are reflected in the
methodology of statistical inference. Crowding
measures are usually estimated from samples
containing entire groups of individuals drawn,
if necessary, with replacement. Each sample
collected in this way has a set of independent
abundance values. On the other hand, a diversity
measure is most frequently estimated from an
independent sample of individuals of the com-
munity investigated. Here, group abundances
are not independent for they add up to the sam-
ple size, that is, the number of individuals in the
sample. Statistical methods have to be chosen
according to the different properties of the two
sampling schemes.

PROOFS
Proof of Proposition 5.—According to the strong

law of large numbers, the average species propor-
tion

PN
i¼ 1 Ui=ðn�NÞ tends to EðU1jX1 [ 0Þ=n

with probability 1, when N tends to infinity. Let
Zi be the abundance of the selected species in
group i. We have

EðU1jX1 [ 0Þ ¼ EðEðU1jZ1;X1;X1 [ 0ÞÞ
¼ E n� Z1

X1
jX1 [ 0

� �

¼ n� E
Z1

X1
jX1 [ 0

� �
.

Here,

E
Z1

X1
jX1 [ 0

� �
¼ E E

Z1

X1
jp1;X1;X1 [ 0

� �� �

¼ E
X1 � p1

X1
jX1 [ 0

� �

¼ E p1jX1 [ 0ð Þ ¼ p.

Proof of Proposition 6.—We conclude from the
strong law of large numbers that the average
species proportion

PN
i¼ 1 Ui=

PN
i¼ 1 Zi tends to

E(U1)/E(Z1) with probability 1, when N tends to
infinity. We have
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EðZ1Þ ¼ EðEðZ1jq1;X1ÞÞ ¼ Eðq1 � X1Þ
¼ Eðq1Þ � EðX1Þ (P1)

and

EðU1Þ ¼ EðEðU1jq1; p1;X1ÞÞ
¼ Eðq1 � p1 � X1Þ
¼ Eðq1Þ � Eðp1 � X1Þ.

(P2)

From Eqs. P1, P2, we have

EðU1Þ
EðZ1Þ ¼

Eðp1 � X1Þ
EðX1Þ .

If Xi and pi are not correlated in non-empty
groups, then

Eðp1 � X1Þ
EðX1Þ ¼ Eðp1 � X1jX1 [ 0Þ

EðX1jX1 [ 0Þ
¼ Eðp1jX1 [ 0Þ ¼ p.
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